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Abstract  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Travel demand in terms of an Origin-Destination (OD) matrix is an 
essential input for network traffic assignment and traffic simulation 
models. Several different methods that estimate OD matrices exist. For 
most of them, a-priori information (in the form of matrices) is 
necessary. Until this day, that information has been acquired from non-
current data sources, such as household surveys and road interviews. 
Due to possible changes in the network or the traffic demand there is 
no guarantee that these data are still accurate. 
 
The quality of OD matrix estimations depends largely on the quality of 
the input data. This thesis is aimed at improving the input data and 
hence improving the estimations themselves.  
 
Detailed traffic data has been collected in the city centre of Chengdu in 
China. The data comprise traffic counts, video camera data and 
Floating Car Data (FCD) that come from taxis. In this thesis the FCD 
are used to derive a-priori matrices and analyze route choices and Trip 
Length Distributions (TLD).  
 
From the results it can be concluded that FCD can indeed be used for 
estimating a-priori matrices and analysing the route choices. However, 
due to the fact that FCD are only sample data, they lack some 
information. This lack of information can be compensated with 
traditional a-priori matrices and route choice analyses. In that way, 
additional, current information is added to the traditional input data, 
which increases their reliability.  
 
The TLD analyses made with the FCD are consistent between days, but 
due to the limited size of the study area, short trips are overestimated. 
With a larger study area the TLD could be used to scale OD matrices so 
that they match the total traffic. That eliminates estimation bias caused 
by the data coming from taxis. 
 
Since the real OD matrix estimations are not known, the reliability of 
the developed methods cannot be estimated. It is however clear that 
using FCD for the examined purposes is very feasible. For further 
research, it is recommended that the real OD matrices should be found. 
Other recommendations are for instance to enlarge the study area and 
add information to the FCD regarding the taxi’s occupancy. 
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1. Introduction 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

In the world today, congestion is a widespread and serious problem. 
Not only does it increase travel times, but it has negative effects on the 
environment due to an increase in emissions as well. In order to solve 
this problem of congestion, there are two main solutions: to extend the 
existing infrastructure or to improve its utilization. In both cases it is 
necessary to know beforehand the effect that the taken measure will 
have. To predict that effect, traffic simulation models and Traffic 
Assignment (TA) models are used. An essential input for both, is the 
travel demand in terms of an Origin-Destination (OD) matrix. 
 

1.1 OD matrix estimation 

There are many different ways to estimate OD matrices. Direct 
methods that estimate an OD matrix from e.g. household surveys and 
road interviews are expensive, time consuming and labour intensive. 
Thus, OD matrix estimation methods that use readily available but 
indirect data like traffic counts are used instead. This subject has been 
thoroughly studied in the past two to three decades and several 
different methods have been developed. For most of these methods, 
the steps that are taken in the estimation are basically the same. Those 
steps are shown in Figure 1.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 1.1: The steps generally taken 
when estimating OD matrices An a-priori OD matrix is assumed. 

That may e.g. be an old OD matrix or a  

matrix estimated with a direct method 

Assigned flows are compared  

with the observed flows 

The flows in the OD matrix are mapped/assigned to 

the network using e.g. traffic assignment 

A-priori OD matrix is adjusted to match  

the observed flows. For this different  

solution approaches can be used 
 

The adjusted OD matrix is used again in step 1 until 

convergence of the assigned and observed flows 

and/or the a-priori and estimated matrix 
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In the first step, where a-priori information is found and an a-priori 
matrix is constructed, traditionally, either direct methods or simply an 
old OD matrix from the network are used. Thus, the a-priori matrix is 
not built on current data, i.e. data from that current time. Due to 
possible changes in the network or the traffic demand there is no 
guarantee that these data are still accurate. The accuracy of the 
estimated OD matrix depends largely on the quality of the input data. 
Hence, it can be assumed that by using current data for the a-priori 
matrix, the accuracy of the estimation can be improved. 
 
The abovementioned assumption is the drive behind the idea of this 
thesis work. The main focus is on improving the input for OD matrix 
estimation methods and hence improving the estimation itself. A new 
method is developed where current data is used to build an a-priori 
matrix. In addition, a method to analyze route choices and trip lengths 
is developed and with this information, a full OD matrix estimation 
method is provided.  
 

1.2 Problem formulation 

To the author’s knowledge, there exist no OD matrix estimation 
methods that make use of current data as a-priori information. Usually, 
the only available current data source is traffic counts that are used in 
the later steps of the estimation. However, when other observation 
data sources exist the possibilities for estimating OD matrices increase.  
 
The dataset used in this thesis work is vast. It includes very detailed 
traffic counts from loops, Floating Car Data (FCD) from taxis and video 
camera data from various points in the network. The idea is that the 
FCD can be used to estimate an a-priori matrix and examine the route 
choice and the Trip Length Distribution (TLD).  
 
The FCD are a very rich source of information but still there are two 
serious questions that are worth to be raised regarding their reliability. 
 
First of all, the FCD comes from just a sample of the whole traffic. 
Thus, they are only sample data where information might be missing 
and the real traffic volumes are unknown. This has to be taken into 
account when constructing the a-priori matrix and examining the route 
choice and the TLD. Hence the first question:  
 

Do FCD comprise enough information to build a good 

a-priori matrix and do they give sufficient information 

about the route choice and the TLD? 

  
The second question deals with the fact that the data come from taxis. 
Taxi drivers might behave different in the traffic than other drivers. This 
leads to the second question: 
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Are data coming from taxis representative for the 

whole traffic, and if not, can the bias be estimated and 

adjusted? 

 

In this thesis, answers to these two questions will be given. 
  

1.3 Research goals 

The main goal of this research is to develop a new method that 
estimates an a-priori matrix from current FCD. The purpose of 
estimating this matrix is to increase the quality of the input for OD 
matrix estimations and hence the estimations themselves. In addition, 
the FCD are used to analyze route choices and trip lengths.  
 
The a-priori matrix and the route choice are then used together with 
traffic counts to estimate OD matrices. The final product of this thesis 
will consequently be a complete OD matrix estimation method. 
 

1.4 Thesis outline 

The structure of this thesis will be as follows:  
 
Chapter 2 introduces the functional concepts of FCD and some of their 
advantages and disadvantages are discussed. Furthermore, a few 
papers that have been written about the different usage of FCD are 
reviewed. 
 
Chapter 3 discusses several different methods that exist for OD matrix 
estimation. A few well-known and important developments are 
mentioned in that context and a general taxonomy for OD matrix 
estimation methods is introduced. 
 
In Chapter 4 the methodologies of the developed methods are 
discussed and the complete OD matrix estimation is classified. 
 
Chapter 5 discusses how the data were prepared before they were used 
for the analyses and the experimental setup is described. 
 
In Chapter 6 results from the thesis work are presented and discussed. 
Furthermore, the questions raised in the beginning of this thesis are 
answered. 
 
Chapter 7 contains conclusions and suggestions for possible future 
steps of research. 
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2. Floating Car Data 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

FCD are a relatively new source of data. The information included in 
FCD is much richer than from traditional traffic data such as traffic 
counts, but it also lacks some information, for instance concerning 
traffic volumes. Still, the possibilities for utilizing FCD in traffic 
management are considered to be vast. Several investigations and 
experiments have already been made with FCD but, to the author’s 
knowledge, none of them are in the field of OD matrix estimation.  
 
In this chapter the functional concepts of FCD are described and their 
advantages and disadvantages discussed. Furthermore, a few papers 
that have been written about different usage of FCD are listed and 
reviewed. 
 

2.1 Functional concepts of FCD 

FCD come from so-called probe-vehicles, i.e. vehicles that are equipped 
with the necessary devices to transmit data to a traffic centre at regular 
time intervals. The data comprise information on the status of the 
vehicle, for instance its location and speed (Coëmet et al., 1999). The 
difference between these data and data from local traffic sensors1 is 
that the FCD sensors actually measure traffic quantities over road 
sections while the local quantities can only be generalized over space, 
at the price of assuming that vehicle operations are both homogeneous 
and stationary during the observation period and over the considered 
road section. However, an important limitation of FCD is that, until this 
time, only a fraction of the traffic has been equipped as probe-vehicles. 
Therefore, the FCD do not give any information about the complete 
volumes of the traffic. Furthermore, there are limitations associated 
with the equipment: the signal might include errors and in some 
locations the reception is interrupted.  Figure 2.1 shows how different 
vehicle information can be obtained from FCD (Van Zuylen et al., 
2006). 
 

                                                   
1 Data from local traffic sensors are for instance vehicle counts, flows, time or harmonic mean 

speeds, “local” densities, proportions of vehicle types, vehicle lengths, etc. 
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The equipment in the probe-vehicles is typically a Global System for 

Mobile communication (GSM) sending out a Global Positioning Signal 
(GPS). In the traffic centre the data are processed in order to make 
them useable. Figure 2.2 illustrates the setup of a FCD system. The 
accuracy of the data depends on the frequency of the positioning and 
broadcasting of the data, the accuracy of the GPS and the number of 
probe-vehicles (Coëmet et al., 1999). 
 
 

  
 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.1: FCD with probe-vehicles  
(Van Zuylen et al., 2006) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.2: FCD system setup  
(Coëmet et al., 1999) 

  

Traffic centre 
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2.2 Previous FCD research 

As mentioned earlier, several papers about the utilization of FCD exist, 
of which none is about OD matrix estimation. In this section, a few of 
them have been selected for discussion. 
  
FCD – Part of “Roads of the Future” research program 

In The Netherlands, the Ministry of Transport, Public Works and Water 
Management (Ministerie van Verkeer en Waterstaat) has carried out an 
experiment with FCD. The purpose of this experiment was to 
investigate the usefulness of FCD and to get an understanding of the 
possibilities and problems with FCD. The experiment was part of a large 
innovation research program called “Roads to the Future”. 
Approximately 60 vehicles in the city of Rotterdam were equipped with 
GPS and GSM devices and the data were used to estimate travel times. 
The results of the experiment were satisfactory. After the data had 
been filtered, about 75% of all the measurements could be used to 
estimate the travel times. The accuracy of the estimated travel times lies 
within 1% of the actual travel times for relatively larger road sections. 
In the report, it is mentioned that the FCD can as well be used for 
deriving OD and route-choice information (Coëmet et al., 1999 and 
Taale et al., 2000). 
 
Deriving road networks from FCD 

For all applications of FCD it is essential to know on which roads the 
vehicles are travelling. For that purpose a digital network is used in 
most applications. The production and maintenance of these networks 
requires a lot of work and resources. Furthermore, the current digital 
networks have an inherent static nature while the real road networks 
are dynamic by nature – new roads are built and old ones 
reconstructed. Temporary changes such as road works and accidents 
also influence the network. In order to overcome this problem 
Hamerslag and Taale (2001) suggest an algorithm that derives road 
networks from FCD. The idea behind this is: “where there are vehicles, 
there must be a road”. 
 
FCD for traffic monitoring  

Torp and Lahrmann (2005) proposed a complete prototype system that 
uses FCD for both automatic and manual detection of queues in traffic. 
The system consists of small hardware units placed in mobile traffic 
report units (taxis were used) and backstage databases that collect all 
the data from the report units. The automatic detection was based on 
analyzing GPS data from the taxis. The manual detection was based on 
taxi drivers reporting traffic queues by using the equipment in the taxis. 
A one-month field test, where 10 taxis were used, showed that the 
system is operational and that the communication costs are very low. 
The field test also provoked new questions, such as how many taxis are 
needed to do real-time queue detection, how to combine automatic 
and manual queue detection, and how to integrate the FCD with 
existing queue detection systems. 
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Local MAD method for probe vehicle data processing 

Ban et al. (2007) presented a local Median Absolute Deviation (MAD)2 
method that processes travel times from raw probe-vehicles data. 
Travel times generated by probe-vehicles may contain a significant 
amount of outliers that must be filtered. For this filtering the local MAD 
method is applied locally to each time window (band) with a fixed 
duration. A sensitivity analysis showed that for data with more than 
2000 data samples per day, a bandwidth of 15 – 30 min should be 
used. 
 
Real time route analysis based on FCD technology 

Zajicek and Reinthaler (2007) proposed a system that uses FCD to 
calculate detailed routes and travel times for hazardous goods transport 
in the Austrian road network. Furthermore the FCD are used to 
calculate historical time series and actual travel times. 
 
 
During the 14th World Congress on Intelligent Transport Systems in 
Beijing, China (October 2007), discussion about FCD research was 
quite prominent. The above-mentioned papers by Ban et al. (2007) and 
Zajicek and Reinthaler (2007) were among those. Other papers on the 
topic are e.g. The application of floating car system in Beijing by Wen 
and Chen (2007) and Validating travel times calculated on the basis of 

taxi floating car data with test drivers by Brockfeld et al. (2007). 
 

2.3 Conclusions 

The information included in FCD is much richer than that of traditional 
traffic data.  However, it also has some limitations due to the fact that 
until now only a fraction of the traffic is equipped as probe-vehicles. 
Thus, it contains for instance no information about the traffic volumes. 
Despite this, it is believed that there are many possibilities in the field of 
FCD, of which some have already been researched. It however appears 
that no research exists on the utilization of FCD for OD matrix 
estimation.  
 
One of the drawbacks of today’s OD matrix estimation methods is that 
they normally use a-priori matrices build on non-current data that 
might no longer be valid. By using FCD, from the same period as the 
OD matrix estimation is being made, to estimate an a-priori matrix this 
drawback can possibly be eliminated. The same applies for the mapping 
of the OD flows. The flows detected within the FCD are real flows and 
thus they must give better outcomes than estimated flows. 

                                                   
2 A statistical measure for capturing the variation of a given set of data points. 
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3. Taxonomy of OD matrix estimation methods 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Existing OD matrix estimation methods can be classified according to 
several different classification methods. In this chapter, a selection of 
those methods is discussed. Based on this discussion, taxonomy rules 
for OD matrix estimation methods are built. Below, the selected 
classification methods are listed in the same order as they are discussed 
in the chapter. 
 

 

The time dimension of the estimation can differ between methods 
 
There are different ways that can be used to map the traffic to the 

links in the network 

 

The mapping of the traffic and the OD matrix estimation can be 

done either separately or simultaneously 

 

The operational application can differ between methods 

 
The type of network used in the estimations can differ 
 
There are several different solution approaches that can be used in 

the estimation 
 
Different methods might use different input data 

  

 
For all the classification methods, important developments and methods 
are mentioned. 
 
The last section of the chapter provides a summary of all the 
classification methods that were discussed and the corresponding 
taxonomy rules. Furthermore, a few well-known OD matrix estimation 
methods are listed and classified. 
 

3.1 Time dimension 

The classical static OD matrix estimation problem is concerned with 
estimating OD flows given a set of link flows for a certain period of 
time, e.g. morning or afternoon peak-periods. This problem has been 
thoroughly studied through the years and various methods have been 
developed in order to solve it. An overview of static OD estimation 
methods using traffic counts can be found in Abrahamsson (1998).  
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Several methods for static OD matrix estimation using traffic counts 
have been introduced since 1998 and are thus not mentioned in 
Abrahamsson’s overview. A few of them are hereafter mentioned: 
 
Cascetta and Postorino (2001) 

The problem is formulated for general congested network as a fixed-
point3 problem of an implicit function, which results from the solution 
of a mathematical programming problem. In other words, the solution 
of the problem is an OD matrix that, once assigned to the network, 
reproduces flows and costs that are consistent with the values used to 
compute the assignment fractions. Several fixed-point heuristic 
algorithms are proposed and their performances are compared on a 
small test network. 
 
Lo and Chan (2003) 

A bi-level (see Section 3.3) OD matrix and link choice proportions 
estimation. This method performs statistical estimation and TA 
alternately until convergence, in order to obtain the best estimators for 
both the OD matrix and the link choice proportions. 
 
Sherali et al. (2003) 

An approach based only on a partial set of link volume information. 
This introduces nonlinearities in the model’s cost function because of 
the dependence of link travel costs on link volumes, and requires a 
determination of a fixed-point (rather than an optimal) solution to the 
proposed model. The fixed-point is determined heuristically by 
iteratively approximating the nonlinear model using a sequence of 
linear programs. 
 
 
The disadvantage of static models is that they cannot handle the time-
dynamic characteristics of traffic flow. Furthermore, they assume that 
the observed link flows represent a steady-state situation that remains 
stable over a period of time. Dynamic OD matrix estimation methods 
however specifically account for the time-dependent traffic flows. 
These studies are becoming increasingly important due to more 
demanding needs for Intelligent Transportation Systems (ITS) and 
Advanced Traveller Information Systems (ATIS). One of the biggest 
challenges regarding dynamic OD matrix estimation concerns the 
difference between the departure time and the observation time. 
Observations are made with a certain time interval. Hence, while a 
vehicle is travelling through traffic network it also travels between 
different time intervals. This can be troublesome since the travel time 
on a certain link in the network is not necessarily equal to the time 
interval. Several methods have been proposed to solve the problem of 
dynamic OD matrix estimation. Following are a few examples of the 
most important ones: 
 

                                                   
3 A fixed-point of a function is a point that is mapped to itself by the function. That is, x is a 

fixed point of the function f if and only if f(x) = x. In this case it is the OD matrix that is 

determined by the OD matrix itself. 
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Cremer and Keller (1981, 1984 and 1987) 

Cremer and Keller introduced one of the first publications on the 
subject of dynamic OD matrix estimation in 1981. Further development 
of their work was published in 1984 and 1987. In their approach from 
1987 the basic idea is that the traffic flow through a facility is treated 
as a dynamic process in which the sequences of short-time exit flow 
counts depend, by causal relationships, upon the time-variable 
sequences of entrance flow volumes. In this way it is assumed that 
enough information can be obtained from the counts at the entrances 
and the exits to obtain unique and bias-free estimates for the unknown 
OD matrix without further a-priori information.  
 
Willumsen (1984): 

Van Zuylen and Willumsen proposed in 1980 a static entropy 
maximization model for OD matrix estimation. In this paper, from 
1984, that model is extended to a dynamic version. This method 
however eliminates errors and hence requires completely consistent 
data. This means that in order to get a feasible solution, the flows into 
links must always equal the flows out of them. 
 

Bell (1991b) 

Two methods are proposed for dynamic OD matrix estimation for 
junctions or small networks. Previous methods assumed that the time 
taken by vehicles to traverse the junction or network is either small in 
relation to the chosen time interval or equal to some fixed number of 
time intervals. In reality there is however a distribution of travel times 
that may span a number of time intervals. Bell’s methods take that into 
account. The first method, which is appropriate if travel times are 
approximately geometrically distributed, makes use of the recurrence 
model of platoon dispersion (see Appendix 1 – Section 9.1). The second 
one makes no assumptions about the form of the distribution of travel 
times, but requires an estimation of substantially more parameters. 
 

Van Der Zijpp (1996, 1997) 

In the Ph.D. thesis of Van Der Zijpp (1996), a dynamic OD matrix 
estimation method is proposed using a Space-Time Extended Network 

(STEN) (see Appendix 2 – Section 9.2). This method is valid for 
motorway networks where traffic is counted on all entries and exits (i.e. 
corridor network (see Section 3.5)). Van Der Zijpp proposed a further 
development of this work in 1997, where automated vehicle 
identification data are used as well.  
 

Sherali and Park (2001) 

In this paper a least squares optimization approach for dynamic OD 
matrix estimation for a general road network is proposed. The 
algorithm uses a decomposition scheme that employs a restricted 
master program, along with dynamic shortest path sub-problems. That 
is done in order to generate additional path information as needed to 
solve the problem. The sub-problem is a dynamic shortest path problem 
on an expanded time-space network, while the master program is 
solved by using a so-called projected conjugate gradient method.  
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Tsekeris and Stathopoulos (2005) 

This paper proposes a demand-orientated methodological approach for 
estimating the operational performance of extended traffic networks, 
particularly under the effect of routing information provision. This 
information is based on the dynamic estimation of the most recent OD 
matrix using time-series of traffic counts. The estimation of the most 
recent OD matrix provides a better representation of the prevailing 
traffic conditions than those produced by the loading of the historical 
a-priori matrix onto the network. The results of these applications 
demonstrated a significant impact of traffic information provision on 
the network performance, in terms of the reduction of travel times and 
the increase of travel speeds. 
 

Zhou and Mahmassani (2007) 

Zhou and Mahmassani have published several reports on the subject of 
dynamic OD matrix estimation. In this recent report, a structural state 
space model to systematically incorporate regular demand pattern 
information, structural deviations and random fluctuations is presented. 
Furthermore, a polynomial trend filter is developed to capture possible 
structural deviations in real-time demand. 
 

3.2 Mapping of OD flows into the network 

An OD matrix has information about how many vehicles are travelling 
between the zones in the network, but it does not include information 
about the route choice of these vehicles. In order to be able to compare 
the assigned flows with the actual flows, one has to map the OD flows 
on the links in the network. The three most common ways to do this 
mapping are: Traffic assignment (TA) – either static (STA) or dynamic 
(DTA) – and direct estimation of the path-flows.  
 
In the case of STA, only one time period is considered and the travel 
demand is assumed to be constant. DTA models are however able to 
capture the true dynamic nature of the traffic. Therefore, in several 
ways the DTA model provides richer and more reliable information than 
the STA model. The outcomes from STA can be very unrealistic. 
Following are examples of that:  
 

- The incorrect assumption is made that all vehicles can complete 
their trips within a certain period of time. 

- The true congestion due to peak demand is underestimated. 
- The true congestion due to dislocation of bottlenecks is 

overestimated.  
 
Further explanation of these examples can be found in Van Zuylen et 
al. (2006).  
 
The framework for DTA can be seen in Figure 3.1. A model set 
normally consists of a route choice model and a Dynamic Network 

Loading (DNL) model. The route choice model distributes the trips in 
the dynamic OD matrix over the available routes for each departure 
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time and each OD pair. The route flows are transferred to the DNL 
model that simulates the route flows over the network and computes 
the dynamic link travel times and dynamic link flows. Then, route travel 
times are transferred back into the route choice model and users may 
adapt their chosen route according to the new traffic conditions. The 
DTA is thus an iterative procedure, converging to dynamic traffic 
equilibrium. In addition of choosing which route to take, travellers can 
also decide to change their departure time. The departure time choice 

model uses the OD travel times for each departure time to determine 
the optimal departure time for all travellers and produces departure 
time rates. When these departure time rates are multiplied with the 
static OD matrix, a new dynamic OD matrix is created and a new DTA 
is performed. The departure time choice model is an optional 
component in DTA models (Van Zuylen et al., 2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Existing OD matrix estimation methods can thus be classified according 
to whether they use TA or not and, if they do, whether they use STA or 
DTA. For dynamic OD matrix estimation methods, all three possibilities 
exist. For static methods, there are only two possibilities since DTA 
would not be used. These five combinations are listed in Table 3.1. 
 

Traffic assignment  

Static Dynamic None 

Static Yes No Yes 
OD matrix 

Dynamic Yes Yes Yes 

 
 
Dynamic OD estimation methods that use DTA include Cascetta et al. 
(1993), Ashok and Ben-Akiva (1993), Sherali and Park (2001) and Zhou 
and Mahmassani (2007). Examples of dynamic OD matrix estimation 
methods that do not use DTA are Cremer and Keller (1981, 1984 and 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.1: Dynamic assignment 
framework (Van Zuylen et al., 2006) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 3.1: Combinations of OD matrix 
estimation methods and TA 
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1987), Willumsen (1984), Nihan and Davis (1987 and 1989), Bell 
(1991b), Wu (1997) and Lin and Chang (2007). 
 
The third approach is to estimate the path flows directly. The OD 
relations are split into different paths between the OD pairs after which 
the flow on each path is estimated. When this approach is used, the 
problem’s dimension surely increases considerably but the route choice 
parameters are directly estimated instead of calculated from an 
assignment. 
 
To further explain these path flow approaches the simple network in 
Figure 3.2 can be used. It shows 3 out of 4 possible routes between A 
and D. For these 3 routes, 3 different OD pairs have to be made; AD1 – 
using links 2-3-4; AD2 – using links 2-7-5; and AD3 – using links 1-6-5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
An important drawback of these path flow approaches is that the same 
set of measurements is used for both the route choice and the OD 
matrix estimation. Therefore, both estimates are based on the same 
timescale. The equilibrium based route choice model requires that the 
measurement set contains information about completed trips. Thus, a 
lower bound is imposed on the admissible aggregation period. That 
lower bound is the time it takes for most vehicles to reach their 
destination. In large networks this causes long aggregation periods that 
are ill-suited for traffic control (Vukovic, 2007). 
 

3.3 Levels in estimation procedure 

Link choice proportions in a network change with traffic conditions. In 
other words, when a certain link gets congested, travellers might 
deviate from their usual route and use other links. Thus, some OD 
matrix estimation methods use a bi-level approach where one level is 
for the TA and the other for the OD matrix estimation (Figure 3.3). 
These two levels work alternately in an iterative process until 
convergence.  
 
An example of a bi-level approach is the dynamic OD matrix estimation 
method proposed by Zhou et al. (2003). In that method the upper-level 
problem is a constrained ordinary least-squares problem, which 
estimates the dynamic OD demand based on given link-flow 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.2: Three of the possible routes 
between A and D 

7 

B C A 

F E D 

AD1 1 

3 

6 

4 AD3 

 

AD2 

5 

2 



 
 
 

 
 
 

 33 Dynamic OD matrix estimation  

proportions. At the lower level, the link-flow proportions are generated 
from a dynamic traffic network-loading problem, which is solved by a 
DTA simulation program. Other examples are the static OD matrix 
estimation method proposed by Lo and Chan (2003) and a method 
proposed by Fisk (1988), where the entropy maximization method of 
Van Zuylen and Willumsen (1980) is combined with TA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the one-level approaches the TA process is either done separately 
(which can lead to inconsistencies in the link choice proportions, 
especially in a congested network) or the path flows are estimated 
directly. 
  
Many methods that use the one-level approach exist such as the static 
OD matrix estimation method proposed by Van Zuylen and Willumsen 
(1980).  
 

3.4 Operational applications 

Another basic difference between existing OD matrix estimation 
methods is their operational application, i.e. whether they operate on-
line or off-line.  
 
In the on-line methods, the new information for the evolution of the 
OD matrix arrives piecemeal. These methods are needed for ITS and 
ATIS. The models should have real-time processing capabilities, 
including the facility to be frequently updated with changes in the 
traffic pattern (Sherali and Park, 2001). 
Examples of methods that work on-line are Cremer and Keller (1987) 
and Sherali and Park (2001). 
 
In the off-line approaches all the data for the OD matrix are available 
at once. These models provide more accurate estimates based on 
historical data, but are computationally more intensive. The off-line 
models are well suited for planning purposes (Sherali and Park, 2001). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.3: The two levels in a bi-level 
approach 
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Examples of methods that work off-line are Van Der Zijpp (1996 and 
1997) and Chen (1993). 
 
On-line methods are more complex than off-line methods since they 
have to predict the destination of each started trip. 
 

3.5 The type of network used 

There are two types of networks that can be used for OD matrix 
estimation, a corridor network and a general network. When corridor 
networks are used there can be no route choice. Furthermore, it is 
essential that all entries and exits in the network are continuously 
monitored. For the general network, that requirement is relaxed and 
route choice can be used. General networks are important when 
handling real-world situations, in which corridor networks hardly exist. 
Corridor networks are mostly used for single motorways. 
 
Several researchers, such as Cremer and Keller (1987) and Van Der 
Zijpp (1996 and 1997), have used corridor networks for their 
approaches. Methods using general networks have been proposed by 
e.g. Van Zuylen (1981), Cascetta et al. (1993) and Sherali and Park 
(2001). 
 

3.6 The solution approach used 

Volume counts in a traffic network impose a set of linear constraints on 
the OD matrix T. Thus, when estimating the OD matrix, the basic 
equation is the following: 
 

 AaVpT
ij

a
a
ijij ∈=⋅∑ ,  (3.1) 

 
Where Va is the volume on link a, Tij is the number of trips from i to j, 
pij

a is the fraction of these trips that travel via link a, and A is the set of 
links in the transportation network. This equation is only valid when 
both the time dimension (see Section 3.1) and the mapping (see 
Section 3.2) are static. For the time dimension to be dynamic the 
departure time (h’) has to be included in Tij and the observation time 
(h) has to be included in Va. Then (3.1) becomes: 
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For the mapping to be dynamic, the departure time and observation 
time have to be included in pij

a. Then (3.2) becomes: 
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The information contained in equations (3.1) – (3.3) is by itself not 
sufficient to find a unique OD matrix. The problem is under-
determined, i.e. there is not only one single OD matrix that fits to the 
traffic counts. This can be explained with the simple (static) example 
shown in Figure 3.4.  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Even in this case of a very simple and fully measured network there is 
more than one possible solution for the OD matrix, the three matrices 
shown are just an example of many possible matrices. For a more 
realistic network, with multiple route choice alternatives and OD pairs 
sharing common links, this problem becomes even larger.  
 
To overcome this under-determination of the problem, several methods 
have been developed where certain constraints are used to find the 
most likely OD matrix. The major part of all OD matrix estimation 
methods use a specific objective function in their solution approach 
and most of them an a-priori matrix as well. Other constraints could be 
e.g. the distribution of the OD matrix and any other data that contain 
information about the structure of the OD matrix. However, those 
constraints are not commonly used. In the case where an objective 
function and an a-priori matrix are used, two functions have to be 
minimized: one for the distance between the estimated OD matrix, T, 
and the a-priori matrix, t, and another one for the difference between 
the estimated flows, V, and the counted flows, v. Hence the related 
optimization problems can be expressed in the following general form: 
 

 0,),(),(),(min 2211 ≥+= VTvVFtTFVTF γγ  (3.4) 
 
where F1 and F2 are objective functions. If the a-priori matrix is very 

reliable and accurate, 1γ  should be large compared to 2γ , which 

should result in an estimated OD matrix close to the a-priori matrix. In 
this case larger deviations between the estimated flows and the 
observed flows can be accepted. On the other hand, if the observed 
traffic counts are reliable compared to the information in the a-priori 

matrix then 2γ  should be large compared to 1γ . The latter part of 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.4: A simple network with traffic 
counts and three possible OD matrices 
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equation (3.4) would then guide the estimation and lead to estimated 
flows that are close to the observed values. In this case larger 
deviations between the estimated OD matrix and the a-priori matrix 
can be accepted (Abrahamsson, 1998). 
 
Following is a description of some of the most common solution 
approaches that have been used in OD matrix estimation methods. In 
the description it is assumed that an a-priori matrix is used for the 
estimation. The notations used are the same as above and can be 
summarized in the following manner: 
 
T:  the estimated OD matrix 
t:  the a-priori matrix 
V:  the estimated flows 
v:  the observed flows 
F1:  the objective function that minimizes the distance between the 

estimated OD matrix and the a-priori matrix 
F2:  the objective function the minimizes that distance between the 

estimated flows and the observed flows 
pij

a: the fraction of trips from i to j  that travel via link a 
 

 

Maximum Likelihood 

The Maximum Likelihood (ML) approach is a statistical method that 
maximizes the likelihood of observing the a-priori OD matrix and the 
observed traffic counts, conditional on the true (estimated) OD matrix. 
It is assumed that the elements of the a-priori OD matrix are obtained 
as observations of a set of random variables. The observed traffic 
counts constitute another source of information about the OD matrix 
to be estimated. The errors of the observed traffic counts and the a-
priori matrix are usually considered to be statistically independent. Due 
to this independence, the likelihood of observing both the a-priori OD 
matrix and the traffic counts is equal to the product of the two 
likelihoods: 
 

 
)()(),( TvLTtLTvtL ⋅=
 (3.5) 

 
When the ML principle is applied for this problem it amounts to seeking 
the OD matrix that maximizes this likelihood. With the convention that 
0·ln(0) = 0 it is also possible to maximize the logarithm of the product. 
 
If a simple random sampling in a region with a stable travel pattern is 
used to obtain the a-priori OD matrix, it may be assumed that the a-
priori OD matrix follows a multinomial distribution. This is dependent 

on small sampling fractions iα . If ti trips are sampled out of a total of 

Ti trips at the origin i then iα  = ti / Ti. The logarithm of the probability 

)( TtL then results in: 
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This equation corresponds to F1 in equation (3.4). If the sampling 
fractions are large enough, Poisson probability distribution can be 
assumed for the a-priori OD matrix. Then we get for F1: 
 

 .))ln(()(ln constTtTTtL
ij

ijiijiji ++−=∑ αα  (3.7) 

 
If the observed traffic counts are assumed to be generated by a Poisson 
distribution as well, and independent of the a-priori OD matrix, another 

similar expression for the probability ))(( TVvL  can be found: 
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 (3.8) 

 
where va(T) is the flow volume on link a resulting from an assignment 
of T. This equation corresponds to F2 in equation (3.4). If one assumes 
a MultiVariate Normal (MVN) distribution for the error terms of the 
observed traffic counts with zero mean and a variance-covariance 
matrix W, we get for F2: 
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If equations (3.8) and (3.9) and proportional assignment are valid 
assumptions, the OD matrix estimation problem can be formulated in 
the following manner: 
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OD matrix estimation methods using ML have been proposed by e.g. 
Spiess (1987) (where equation (3.10) is one of the optimization 
problems considered and solved with an algorithm of the cyclic 
coordinate ascent type) and Nihan and Davis (1989) (Abrahamsson, 
1998). 
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Generalized least squares 

For the Generalized Least Squares (GLS) approach it can be assumed 
that the a-priori OD matrix is obtained from the estimated “true” OD 
matrix with a probabilistic error term. The traffic counts may in the 
same way be viewed as obtained from a stochastic equation: 
 

 
eTVv
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η
 (3.11) 

 
where η  is the probabilistic error that relates the a-priori matrix with 

the estimated OD matrix and e  the error that relates the observed 
flows with the estimated flows. Frequently, both η  and e  are assumed 

to have zero means.  
For the GLS estimator that is derived below, no distributional 
assumptions need to be made for η  and e ; there is only a requirement 

on the existence of dispersion matrices4. When no accurate dispersion 
matrices are available unity matrices (with diagonal elements equal to 
1) have often been used. This independence of distributional 
assumptions is an important advantage of the GLS approach. Like in 
the ML approach the a-priori OD matrix and the observed traffic 
counts are independent from each other. If the dispersion matrix of the 
traffic counts is W and the a-priori OD matrix has an error with a 
variance-covariance matrix Z, the GLS estimator can be obtained by 
solving the following: 
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An important factor of the GLS approach is that the observed traffic 
counts and the a-priori OD matrix are readily combined. For example, if 
either of the dispersion matrices is close to zero (which reflects great 
confidence in that part of the information), the inverse of the matrix is 
very large. This means that the weights on the corresponding 
deviations are large and as a result, the model reproduces this part of 
the observed information when the minimum is attained. The 
approximation of the dispersion matrix Z can be done in different ways, 
amongst other if an origin-based simple random sampling is adopted, 
an approximation that becomes sparse may be developed. The 
dispersion matrix W is often considered to be diagonal and therefore no 
covariances between the different traffic counts are assumed 
(Abrahamsson, 1998). 
 
Several OD matrix estimation methods using the GLS approach exist. 
Cascetta (1984) derived two estimators for static methods. Nihan and 

                                                   
4 A matrix containing the scattering values of a variable around the mean or median of a 

distribution 
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Davis (1987, 1989) and Bell (1991a) also proposed static OD matrix 
estimation methods. In Bell’s method the non-negativity constraints on 
the estimated OD matrix are explicitly considered. One of the first 
publications on the subject of dynamic OD matrix estimation was by 
Cremer and Keller (1981) who used the GLS approach for their method. 
Further development of their work can be found in their 1984 and 
1987 publications where they propose an addition to the GLS in order 
to satisfy certain equality constraints. A recent method for dynamic OD 
estimation can be found in Sherali and Park (2001), where a bi-level, 
least squares optimization approach is proposed for a general road 
network. 
 
 
Entropy maximization and minimum information 

Because the information provided by the traffic counts on some links is 
insufficient to determine a unique OD matrix, it is possible to argue 
that one should choose a “minimum information” OD matrix. That is 
an OD matrix that adds as little information as possible to the 
information in the a-priori matrix, while taking into account the 
equations relating the observed traffic counts to the estimated OD 
volumes. The estimated, minimum information matrix is obtained from 
minimizing the function I: 
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This equation is the minimum information or entropy maximizing 
function. An OD matrix minimizing while reproducing the traffic count 
constrained in the a-priori OD matrix into account may be derived in 
the following way: 
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where each iλ  is a Lagrange multiplier associated with the constraint 

that relates the link flow with the OD matrix. Equation (3.14) relies on 

the assumption of a proportional assignment, i.e. constant a
ijp  

(Abrahamsson, 1998). 
 
Van Zuylen and Willumsen (1980) proposed two important models of 
this type, which later were improved by Van Zuylen (1981). Willumsen 
(1984) extended these models to a dynamic version and Fisk (1988) 
proposed another extension to a congested case by introducing the 
user-equilibrium conditions as constraints.  
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Bayesian inference 

The Bayesian inference approach considers the a-priori OD matrix as a 
prior probability function Pr(T) of the estimated OD matrix. If the 
observed traffic counts are considered as another source of information 

about the estimated OD matrix with a probability )( TvL  then the 

Bayes’ theorem can provide a method for combining those two sources 

of information. For the posterior probability )( vTf  of observing the 

estimated OD matrix conditional on the observed traffic counts we 
have the following: 
 

 )Pr()()( TTvLvTf ⋅≈  (3.15) 

 
This posterior probability function allows for the determination of a 
confidence region for the estimated OD matrix. However, due to 
practical computational complications only point estimators can be 
obtained. This can take the form of the maximum value of the 
logarithm of the posterior distribution, the OD matrix that maximizes 

ln )( vTf . A Poisson probability or a MVN distribution is usually 

assumed for the observed traffic counts (the first term in equation 

(3.15)). The logarithm of )( TvL  will then be expressed by equations 

(3.8) or (3.9). A multinomial distribution can then be assumed for the 
probability function Pr(T). Using Stirling’s approximation results in: 
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TT .)ln()Pr(ln  (3.16) 

 
That is the minimum information function. A similar function can also 
be obtained with a Poisson approximation of the multinomial 
distribution.  
 
Maher (1983) proposed that if one assumes that a MVN distribution 
holds for Pr(T), with mean q and dispersion matrix Zq, we get: 
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Here it is assumed that the proportional assignment holds. For the 
observed traffic counts the MVN assumption is made and it is shown 
that in this case the estimated OD matrix also becomes MVN 
distributed. Another, more recent, method using the Bayesian inference 
approach was proposed by Van Der Zijpp (1996, 1997). 
 
The Bayesian inference approach is a statistical inference technique 
with some properties in common with the previously discussed ML and 
GLS approaches. However, the roles assumed by the estimated OD 
matrix in the classical inference approaches (ML and GLS) and the 
Bayesian inference approach differ. In the former case, the true Tij are 
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parameters of the likelihood function ),( TvtL , while in the latter case 

the Tij are random variables with given prior distributions 
(Abrahamsson, 1998). 
 
 
Kalman filtering 

The Kalman filter is a widely used and efficient, recursive incremental 
algorithm that is used to solve a GLS problem using the assumptions 

that ),0( 2
ηση N=  and ),0( 2

eNe σ= . In OD matrix estimation, 

Kalman filtering is only used for the dynamic case. 
 
The discrete Kalman filter deals with solving the linear stochastic 
difference equation 
 

 111 −−− ++= kkkk wBuAxx  (3.18) 

 

with a measurement mz ℜ∈  that is 
 

 kkk vHxz +=  (3.19) 

 
where the random variables wk and vk represent the process and 
measurement noise. These random variables are assumed to be 
independent of each other, white noise and with normal probability 
distributions. 
The extended Kalman filter deals with the non-linear stochastic 
difference equation 
 

 ),,( 111 −−−= kkkk wuxfx  (3.20) 

 

with a measurement mz ℜ∈  that is 
 

 ),( kkk vxhz =  (3.21) 

 
where the random variables wk and vk represent the process and 
measurement noise. Here the non-linear function f in equation (3.20) 
relates the state at the previous time step k – 1 to the state of the 
current time step k. Included, as parameters, are a driving function uk –1 
and the zero-mean process noise wk. The non-linear function h relates 
the state xk to the measurement zk (Welch and Bishop, 2006). 
 
The Kalman filter provides an efficient computational remedy to 
estimate the state of a process, in a way that minimizes the mean of 
the squared error. The Kalman filter is, in many aspects, very powerful. 
It can support estimations of past, present, and future states, and it can 
do so even when the precise nature of the modelled system is unknown 
(Welch and Bishop, 2006). Further advantages of the Kalman filter are 
the possibility to process measurements that are interdependent, and 
that it does not only give an estimate for a split matrix, but also for a 
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covariance matrix that gives an indication of the reliability of the 
estimate.  
 
Various researchers have used the Kalman filter for their model 
developments, e.g. Cremer and Keller (1987), Nihan and Davis (1989), 
Ashok and Ben-Akiva (1993), and very recently Zhou and Mahmassani 
(2007).  
 
A more detailed and rather simple description of both the discrete 
Kalman filter and the extended Kalman filter can be found in Welch 
and Bishop (2006). 
 

3.7 Input data used 

The accuracy of an estimated OD matrix depends largely on the quality 
of the input data. As mentioned earlier in Section 3.6 most OD matrix 
estimation methods use both traffic counts and a-priori information as 
input. In those cases, the amount of counted links in the network and 
the similarities between the a-priori information and the current 
situation are important.  
 
Methods that use both traffic counts and a-priori matrices include Van 
Zuylen and Willumsen (1980), Nihan and Davis (1987), Fisk (1988) and 
Sherali and Park (2001). In Cremer and Keller (1987), only traffic 
counts are used. 
 
The traffic data for the OD matrix estimation could also be obtained 
with Automated Vehicle Identification (AVI) techniques such as 
automated license plate recognition, or they may originate from FCD, 
as in this research. In Van Der Zijpp (1997) traffic counts and AVI data 
are used together for a dynamic OD matrix estimation. In this case, 
data fusion becomes part of the problem. There are, to the knowledge 
of the author, no records of using FCD in OD matrix estimation. 
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INTERMEZZO – The work of Vukovic 

 
In Vukovic (2007) four state of the art OD estimators are chosen and 
their performance in the MiOS simulation suite5 is determined for a 
range of scenarios. The result of the research is that augmented Kalman 
filtering is the best-suited OD matrix estimation method for on-line OD 
matrix estimation, while the other three methods incorporate 
simplifications that ensure that operational requirements are met to a 
lesser degree. Furthermore, it is shown that it is impossible to guarantee 
successful OD matrix estimations from any of the tested methods.  
It is recommended that researchers in the field should in the future 
concentrate on the addition of information to the OD matrix estimation 
procedure as well as on further development of maximum likelihood 
methods. 
 
There are a few main differences between the work of Vukovic and the 
work done for this thesis. Firstly, all the methods examined by Vukovic 
operate on-line while the method developed here works off-line. 
Secondly, in this thesis additional information is used for the OD matrix 
estimation like Vukovic recommended. The results found in this thesis 
might however be used to pull real-time estimations down to ground 
truth, and hence increase their reliability. 
 

                                                   
5 MiOS is a microscopic on-line simulation suite that is currently being developed at the Delft 

University of Technology, 
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3.8 Summary and conclusions 

There exist many different approaches to OD matrix estimation and 
surely some are more developed and accurate than others. However, 
the needed accuracy of the OD matrix estimation depends heavily on 
the intended use of the OD matrix. While long term strategic 
alternatives can be based on rather coarse estimates, real-time ITS and 
ATIS require more accurate and considerably richer OD matrix 
information.  
   
In this chapter several of these different approaches have been 
discussed. The topics addressed in this discussion can be summarized 
into a few classification rules for OD matrix estimation. Below these 
rules are listed and in Figure 3.5 the taxonomy of OD matrix estimation 
methods, built on these rules, is shown. 
 

 

OD matrix estimation methods are split into two main groups; 

static and dynamic. 

 

The mapping of the OD flows to the links in the network is most 

commonly done either with Traffic assignment or path-flow 

estimation. If Traffic assignment is used it can be either static or 

dynamic. 

 

The mapping can be done either on one level or two levels (bi-

level). 

 

Methods can work either on-line or off-line. 

 

There are two types of networks: general and corridor. 

 

There are several different solution approaches that can be used, 

i.e. ML, GLS, maximum entropy and Kalman filtering. 

 

There are a few different data sources that can be used, i.e. traffic 

counts, FCD and video camera data. 

 

 
The main focus in this research is on the last topic addressed in this 
chapter, the input data. Most OD matrix estimation methods that use 
traffic counts use a-priori information as well. It is clear that the more 
accurate the a-priori information is, the more accurate the estimation 
will be. Until now the a-priori information have been based on non-
current data, which are not guaranteed to mirror the current situation. 
In practice, most dynamic OD matrices are derived with existing static 
OD matrices used in strategic models as a-priori matrix. It can thus be 
assumed that the OD matrix estimation can be improved by using 
current data as a-priori information. 
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The methods that are developed in this thesis are further described and 
classified in Chapter 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Only dynamic methods can work on-line 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.5: The taxonomy of OD matrix 
estimation methods 
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In addition, Table 3.2 lists several well-known estimation methods and 
classifies them according to the rules above.  
 
 
 
 

 Time 

dimension 
Mapping Use of TA 

On-line vs. off-

line 

Type of 

network used 

Solution 

approach 
Input data 

Van Zuylen and 

Willumsen (1980) 
Static One-level None Off-line General Entropy 

Traffic counts 

and a-priori 

matrix 

(optional) 

Cremer and Keller 

(1987) 
Dynamic One-level None On-line Corridor 

E.g. GLS and 

Kalman filtering 
Traffic counts 

Nihan and Davis 

(1987) 
Dynamic One-level None Off-line Corridor 

Recursive LS 

and Kalman 

filtering 

Traffic counts 

and a-priori 

matrix 

Bell (1991a) Static One-level None Off-line General GLS 
Survey data and 

traffic counts 

Bell (1991b) Dynamic One-level None Off-line Corridor 

Recurrence 

model of 

platoon 

dispersion 

Traffic counts 

Van Der Zijpp 

(1997) 
Dynamic One-level None Off-line Corridor Bayesian 

Traffic counts, 

vehicle 

trajectories and 

a-priori matrix 

(optional) 

Sherali and Park 

(2001) 
Dynamic One-level None 

Both on-line 

and off-line 
General GLS 

Traffic counts 

and a-priori 

matrix 

(optional) 

Zhou, Qin and 

Mahmassani 

(2003)  

Dynamic Bi-level DTA On-line General GLS Traffic counts 

Tsekeris and 

Stathopoulos 

(2005) 

Dynamic Bi-level DTA On-line General 
Entropy 

maximization 
Traffic counts 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 3.2: Classification of several OD 
matrix estimation methods 
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4. Methodology of the developed estimation 

processes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

In the upcoming chapter the developed methods, which use FCD for a-
priori matrix estimation, route choice analysis and Trip Length 
Distribution (TLD) are discussed and the complete OD matrix 
estimation that uses these FCD a-priori matrices and route choices is 
described.  
 
In the first part of the chapter, the methodology of the a-priori matrix 
estimation, the route choice analysis and the TLD analysis are discussed 
and the application of a computer program called NEST6 is described. 
 
In the second part of the chapter, the classification of the complete OD 
matrix estimation method, which can be seen in Figure 4.1, is 
introduced. All of the seven classification levels are discussed 
separately. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                   
6 Networkflow ESTimator. A program developed by Van Zuylen based on Van Zuylen (1980). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 4.1: Classification of the 
developed estimation method, based on 
the taxonomy defined in Chapter 3 
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4.1 Methodology 

The first problem to be solved when analysing the FCD is how to define 
a beginning and an end of a trip, i.e. an Origin (O) and a Destination 
(D), within the data. That definition affects all information derived from 
the FCD. Hence, a necessary step prior to the analyses is to define rules 
that determine when a trip starts and ends.  
 
Some FCD include information about the vehicle’s occupancy, but the 
data used in this thesis does not. Thus the rules have to be based on 
the time of the measurements and the speed of the vehicles.  
 
When the rules have been defined the FCD can be analyzed further and 
information like OD matrices, route choices and TLD can be derived. 
 
In the following sections these rules are defined and the methodology 
of the a-priori matrix estimation, the route choice analysis and the TLD 
are discussed. Finally, the application of the computer program NEST is 
described.  
 

4.1.1. Rules for determining origins and destinations within FCD 

 
Since the FCD come from taxis, a trip starts at an O when a passenger 
enters the taxi and ends at a D when he steps out. The FCD do not give 
any information about whether the taxi is occupied or not. Thus, in 
order to derive an OD matrix from the data, a time limit has to be 
defined in order to distinguish between real stops (where passengers 
leave or enter the vehicle) and intermediate stops (e.g. on traffic lights 
and in traffic jams).  
 
Another factor that distinguishes a measurement as an O or a D is 
when the driver takes a break, i.e. stops and turns the vehicle off. The 
GPS equipment turns on and off with the vehicle, therefore data are 
only transmitted when the vehicle is on. Data might also get lost due to 
high-rise buildings or closed facilities such as tunnels or fly-overs. Thus, 
a time limit needs to be defined in order to distinguish these missing 
data from each other. 
 
Yet another definition for an O and a D is when a driver leaves or 
enters the study area. The driver could be leaving the study area only 
shortly during a trip that starts and ends within the study area or he 
might have a break or real stop while located outside the study area. 
Hence, a time limit needs to be set that defines when a vehicle has 
actually left the study area.  
 
Finally, the first and last measurements from a vehicle must either be an 
O or a D. 
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The abovementioned factors can be summarized into four rules that 
define a start and an end of a trip within the FCD.  
 

 

Rule 1 – Real stop  

Stopping at traffic lights should under normal circumstances not exceed 
2 minutes, and when a vehicle is stopped in a traffic jam it can be 
assumed that its speed is not completely 0km/h for more than 2 
minutes. When a trip in a taxi ends, the driver has to print out a receipt 
and the passenger has to pay for the ride. This process is assumed to 
take more than 2 minutes. These assumptions lead to the first rule of 
the FCD processing: 
 

A stop is considered to be a real stop if the measured 

speed is 0km/h for 2 minutes7 or more. Stops that last 

less then 2 minutes are considered to be intermediate 

stops. Thus, the last measurement before a real stop is 

a D and the first measurement after a real stop is an O. 

 
 

Rule 2 – Break 

When a vehicle is driving, usually the GPS equipment sends out 
measurements every 1-minute. When the driver takes a break and turns 
off the vehicle, and hence the GPS equipment, it can be assumed that 
the last measurement before the break is a D and the first measurement 
after the break is an O. It is assumed that a disruption of data emissions 
due to high-rise buildings, tunnels and fly-overs should not, under 
normal conditions, exceed 2 minutes. This assumption leads to the 
second rule of the FCD processing: 
 

When the time between two measurements exceeds 2 

minutes8 it can be assumed that the driver has taken a 

break. Thus, the last measurement before the break is 

a D and the first measurement after the break is an O.  
 

 

Rule 3 – Vehicles entering/leaving study area 

The first and last measurements with speed larger than 0 km/h that are 
detected from a vehicle before/after leaving/entering the study area 
are an O or a D. The driver could however also be leaving the study 
area for a short time within a trip that begins and ends inside the study 
area. In this thesis it is assumed that when a driver leaves the study 
area for 2 minutes or longer he has actually left the study area. This 
assumption leads to the third rule of the FCD processing: 
  

                                                   
7 This variable was tested in the sensitivity analysis in Section 6.1 
8 This variable was tested in the sensitivity analysis in Section 6.1 
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A vehicle is defined to have left the study area if it 

dwells outside it for 2 minutes9 or longer. The first 

measurement with speed larger than 0 km/h that is 

detected from a vehicle after it enters the study area is 

an O. The last measurement with speed larger than 0 

km/h that is detected from a vehicle before it leaves 

the study area is a D.  

 
 
Rule 4 – First and last measurements from a vehicle 

The first and last measurements with speed larger than 0 km/h that are 
detected from a vehicle are an O or a D. This leads to the fourth rule of 
the FCD processing: 
 

The first measurement with speed larger than 0 km/h 

that is detected from a vehicle is an O. The last 

measurement with speed larger than 0 km/h that is 

detected from a vehicle is a D. 

 
 
Surely, more than one rule can apply for one measurement, for 
instance there can be a real stop both before and after a 
measurement, a break right after the first measurement from a vehicle 
or just before the last measurement from a vehicle. In those cases 
these measurements are according to the rules both an O and a D. 
That is however not logical, thus they are neither assigned an O nor a 
D. 
 

4.1.2. A-priori matrix estimation with FCD 

After the beginnings and the ends of trips within the FCD have been 
determined, OD matrices can be derived directly from the dataset 
(these matrices are hereafter referred to as OFCD matrices). However, 
one of the disadvantages of the FCD is that they are only from a 
sample of the whole traffic. Hence, these OFCD matrices are also only 
a sample and therefore the detected trips are only a fraction of the total 
traffic volume. When the time slices are small it is thus highly likely that 
the OFCD matrices have no measured trips for OD pairs with low 
values. Due to this, the OFCD matrices probably do not include enough 
information to serve as good a-priori matrices. In order to do so, their 
missing values need to be replaced and they should be scaled up to 
match the real traffic volumes. But how can that be done in a good 
way? 
 
A rough gesture would be to replace all the missing values with a low 
value, like 1 for instance (these matrices are hereafter referred to as 
PFCD). But since the values in the OFCD matrices are already very low, 
that would make the structure of the PFCD matrices rather uniform and 
thus probably different from the actual OD matrices, plus that it does 
not solve the problem of the traffic volumes.  

                                                   
9 This variable was tested in the sensitivity analysis in Section 6.1 



 
 
 

 
 
 

 51 Dynamic OD matrix estimation  

 
One solution is to use a complete OD matrix from the area, both for 
the scaling and the filling of missing measurements. That matrix can for 
instance come from a historical database, a traffic survey or another 
estimation method, and it can be used both for replacing the missing 
measurements and for the scaling. In this way, additional information is 
added to the matrices that are traditionally used as a-priori matrices. 
The resulting matrix will hereafter be referred to as CFCD. 
 
In Figure 4.2 a procedure for this replacement of missing measurements 
and scaling is suggested.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

              
                      mM /×  
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Figure 4.2: A suggested process for 
deriving CFCD 
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4.1.3. Route choice analysis with FCD 

Since the FCD contain information about the link on which the vehicles 
are driving as well as the driving direction, the paths of the vehicles can 
be traced through the network. The measured paths however are 
sometimes not complete. Due to e.g. missing measurements, 
measurement errors or just the fact that there is normally a whole 
minute between two measurements, links are often missing to connect 
two consecutive measurements. Thus, in order to construct a complete 
route, the computed shortest paths10 are inserted between the links 
when needed. An example of this follows. 
 

 

EXAMPLE 

When a vehicle is detected on the link between nodes 6 and 24 in one 
measurements and on the link between nodes 25 and 39 in the next 
measurement, the shortest path between 24 and 25 (node 52) has to 
be inserted to complete the path. This is shown in Figure 4.3 where the 
blue arrows are part of the measured path and the red arrow is the 
inserted shortest path. 
 

 

 
 
 
When all the routes have been constructed, the route choice analysis 
can be made, i.e. the values of pij

a can be calculated. The route choice 
analysis can then be used for the mapping of the OD flows to the 
network. There are three potential situations that exist for all the OD 
pairs and for those situations three different measures to analyze the 
routes. These situations and measures are listed in Table 4.1. 

                                                   
10 Calculated with DYNASMART 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 4.3: The shortest path is inserted 
to complete the path. 
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Situation Measure 

There is no detected route between an 

OD 

A route is found to compensate for the 

missing information, in this thesis the 

calculated shortest path is used 

There is only one detected route 

between an OD 
That particular route is used 

There are more than one routes detected 

between OD 

For all the links in those routes the 

parameter pij
a needs to be found 

 
The first two situations are simple since pij

a = 100%. In case of the last 
situation pij

a, is calculated: the total number of times that each link in 
the paths appears is divided with the total number of paths. To explain 
this, the following example is given. 
 

 

EXAMPLE 

Lets assume that for the OD pair between zone A and B, i.e. TAB, the 
following routes are detected: 
 
 1 – 2 – 3 – 4    with one trip 
 1 – 2 –  4 with two trips 
 1 – 4   with three trips 
 
Then we get: 
 

pAB
1 = (1+2+3)/6*100 = 100% 

pAB
2 = (1+2)/6*100 = 50% 

pAB
3 = 1/6*100 = 16,7% 

pAB
4 = (1+2+3)/6*100 = 100% 

 

 

4.1.4. Trip length distribution analysis with FCD 

In addition to the necessary input for NEST the TLD was examined. The 
TLD can be calculated in two different ways: directly from the FCD and 
from the estimated OD matrix. Those are described below.  
 
TLD obtained directly from FCD 

When the paths within the FCD are completed, the trip lengths can be 
calculated. The length of all the links in the network is known. In order 
to calculate the length of the trips, the lengths of the links used for 
each trip are added up.  
 
TLD calculated from estimated OD matrices 

Another approach to estimate the TLD is to use the estimated OD 
matrix to calculate the trip lengths. In the OD matrix the number of 
trips between each OD pair is given, with that information and the 
computed shortest paths the TLD can be calculated.  
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 4.1: The tree possible situations 
and corresponding measures for the 
route choice analysis 
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In this thesis, the TLD is only used in order to estimate whether the 
distribution of trip lengths is logical. It might be possible to utilize the 
TLD as an additional constraint for the OD matrix estimation. That 
work exceeds the scope of this thesis but it will later be issued in a 
paper. 
 

4.1.5. The application of NEST 

NEST is a static OD matrix estimation program developed by Van 
Zuylen based on Van Zuylen (1981). It uses maximum entropy and 
minimum information as an objective function to calculate the most 
likely OD matrix. In this thesis, the application of NEST is extended in a 
simple way in order to make dynamic OD matrix estimations (see 
Section 4.2.1). 
  
The necessary input for NEST are traffic counts. An optional input is an 
a-priori matrix. For all OD pairs in the network the routes have to be 
defined using only the counted links and the parameter pij

a. This 
parameter is either estimated separately or skipped and the path flows 
estimated directly as described in Section 3.2. In this thesis, the former 
is done, as described in Section 4.1.3.  
 
NEST finds the most likely OD matrix by iterating the calculations until 
the counted flows and the estimated flows converge. A scheme that 
shows the inputs (that are used here) and output of NEST as well the 
iteration process can be seen in Figure 4.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 4.4: The inputs, output and 
iteration process of NEST 
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4.2 Classification of the developed OD matrix estimation 

method 

In the following sections the classification of the developed estimation 
method (see Figure 4.1) is discussed. All the classification levels are 
addressed separately.   
 

4.2.1. Time dimension 

The developed method performs the estimation statically in small time 
slices of 10 minutes. This is a simple way to extend a static method into 
a dynamic one and the problem’s dimension is minimized. However, 
this method has some drawbacks, since the travel times between the 
ODs will probably exceed the estimation time frequently. Furthermore, 
there is no connection between the time slices because the estimations 
are made separately. 
  

4.2.2. Mapping of OD flows into the network 

The mapping of the OD flows to the links in the network will not be 
done in one of the traditional ways that were described in Section 3.2, 
i.e. there will be no actual TA process used nor will the path-flows be 
estimated directly.  
 
In this thesis a new method is developed, in which the route choices are 
measured dynamically with the FCD. In that way, actual flows are used 
instead of only estimated flows. However, especially when the time 
slices are small, there is a risk of no routs being detected between some 
OD pairs. In those cases, the calculated shortest paths are used. This 
process is described in Section 4.1.3. 
  

4.2.3. Levels in estimation procedure 

Since the data is already available, the abovementioned route choice 
estimation will be done separately before the actual OD matrix 
estimation. This means that the OD matrix estimation is done on one 
level. 
 

4.2.4. Operational application 

On-line methods have to predict the destination for all starting trips. 
Thus, they are quite complex. The data used in this thesis for the 
complete OD matrix estimation are already available and thus it is 
possible to do the estimation off-line. 
 
The estimations of the a-priori matrix, the route choices and the TLD 
are done with the knowledge of the destination of each trip, i.e. they 
are estimated off-line as well.  
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4.2.5. The network used 

The study area used in this thesis work is the centre of the city 
Chengdu in southwest China. A satellite image of the area, taken from 
Google Earth, can be seen in Figure 4.5a. This area is about 2 km wide 
and 3 km long, i.e. about 6 km2, which is rather small. 
 
The network, built on the study area, can be seen in Figure 4.5b. It is a 
general network that is divided into 18 zones and has 66 nodes and 
218 links. The zones in the network are circumscribed with polygons, 
the zone numbers are in the centre of each zone and the node numbers 
are on the nodes. For a network with 18 zones, the size of a generated 
OD matrix will be 18x18=324 OD pairs.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.6. The solution approach used 

A computer program called NEST, developed by Van Zuylen based on 
Van Zuylen (1981), is used as a tool for the OD matrix estimation. This 
program uses maximum entropy and minimum information to estimate 
the most likely OD matrix for each of the time slices. NEST performs a 
static estimation, but by having the time slices relatively small, the 
estimation is extended in a simple way to a dynamic one. NEST and its 
application were further discussed in Section 4.1.5. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 4.5: The study area – Chengdu’s 
city centre and the network. 
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Many other tools exist that can calculate OD matrices statically but 
here NEST is chosen due to its availability and short calculation times.  
 

4.2.7. The input data used 

There are two11 types of data used for the complete OD matrix 
estimation: 
 

- Traffic counts, used in a traditional way to compare the 
assigned flows with the real flows, 

- FCD, used to estimate a-priori matrices, route choices (and 
additionally, TLD), and 

 
Following is a more detailed description of the input data. 
 
Traffic counts 

There are traffic counts available from 47 links in the network. The 
counted periods are in the morning peak, between 7:30 and 8:50, and 
the time interval between counts is 10 minutes. 
 
FCD 

The FCD from Chengdu were collected in a period of 2 months. During 
that period a large amount of taxis were driving around the whole city, 
but on the days from which data was used for this thesis work, on 
average 1960 probe-vehicles were detected within the study area. The 
interval between each measurement is 1 minute, thus the dataset is 
very large. If necessary, it would be possible to get the data with a 
smaller time interval but for this work it was considered to be 
unnecessary. Table 4.2 lists these main properties of the data. 
 
 

Number of probe-vehicles in study area 1960 on average 

Time interval between measurements 1 minute 

Duration of data collection 2 months 

Type of data collection equipment GPS 

 
The Chengdu FCD comprise a lot of information about the vehicle’s 
status. Some of the information is irrelevant to the work done in this 
thesis but the information that was used is the following: 
 

- Vehicle plate number and vehicle ID. 
- Date and time of the measurement. 
- Longitude and latitude coordinates. 
- The speed of the vehicle. 

 
The GPS equipment switches on and off with the vehicle. The drivers 
can also turn it off, but since they are specifically asked not do so, 
normally that is not the case. The GPS signal is lost when the vehicle is 

                                                   
11 When the CFCD matrices (see Section 4.1.2) are used as a-priori matrices, additional input 

data is needed. That is a complete matrix from the study area. These matrices can for instance 

be derived from historical data or survey data. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 4.2: The Chengdu FCD properties 
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located within a closed structure, like garages and tunnels and it might 
get lost in locations where high-rise buildings block the reception.   
 

4.3 Summary 

The first part of this chapter discusses the methodology of the new 
methods developed in this thesis. Rules that determine beginnings and 
ends of trips are defined and thereafter the process of deriving a-priori 
matrices and analysing the route choices and the TLD are described. 
The OD matrix estimation tool, NEST, that uses the a-priori matrices 
and the route choice analysis for its estimation, is as well described in 
the chapter. A recap of this part of the chapter follows below.   
 
Rules for determining origins and destinations 

Four rules were defined that determine Os and Ds within the FCD. 
 

1. A stop is considered to be a real stop if the measured 
speed is 0km/h for 2 minutes or more. Stops that last 
less then 2 minutes are considered to be intermediate 
stops. Thus, the last measurement before a real stop is 
a D and the first measurement after a real stop is an O. 

 
2. When the time between two measurements exceeds 2 

minutes it can be assumed that the driver has taken a 
break. Thus, the last measurement before the break is a 
D and the first measurement after the break is an O.  

 
3. The first measurement with speed larger than 0 km/h 

that is detected from a vehicle after it enters the study 
area is an O. The last measurement with speed larger 
than 0 km/h that is detected from a vehicle before it 
leaves the study area is a D. A vehicle is defined to be 
outside the study area if it dwells there for 2 minutes or 
longer. 

 
4. The first measurement with speed larger than 0 km/h 

that is detected from a vehicle is an O. The last 
measurement with speed larger than 0 km/h that is 
detected from a vehicle is a D. 

 
A-priori matrix estimation with FCD 

Three different OD matrices that can be derived from FCD were 
discussed: 
   
OFCD is the original OD matrix derived from the FCD. Due to it sparse 
nature and low traffic volumes, it might not comprise sufficient 
information to serve as a good a-priori matrix. 
 
PFCD is a matrix where the missing values of OFCD are replaced with a 
low value, e.g. 1. This way of constructing an a-priori matrix however 
only solves a part of the problem; missing values are replaced but the 
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traffic volumes are still too low. Furthermore, since the values in the 
OFCD are most likely rather low, the structure of the PFCD might not 
resemble the structure of the real OD matrix.  
 
Thus, the third matrix is suggested: CFCD. For constructing CFCD a 
combination of FCD and historical data or survey data is necessary (i.e. 
a traditional a-priori matrix). If those data do not exist, a matrix 
estimated with another method can be used. The way this matrix is 
constructed can be seen in Figure 4.2. 
 
Route choice analysis with FCD 

The routes of the vehicles can be detected throughout the network. 
Those routes are often not complete, i.e. sometimes links are missing 
between two consecutive measurements. In those cases, the computed 
shortest paths between those two measurements are inserted. 
 
When the routes are complete, there might still be OD pairs with no 
detected routes. In those cases, the shortest paths between the OD 
pairs are used. For all the routes, the value of pij

a needs to be found for 
all the links in the route. When shortest paths are used and when only 
one route is detected for an OD pair this is simple since all pij

a =100%. 
However, when more than one route is detected for an OD pair the 
values of pij

a need to be calculated. The calculation procedure is 
described in the chapter. 
 
Trip length distribution analysis with FCD 

When all the routes have been identified and completed, the TLD can 
be analysed. There are two ways to derive the TLD: directly from the 
FCD and from the estimated OD matrix. These are described in the 
chapter.  
 
The application of NEST 

The chapter describes roughly how NEST uses the a-priori matrix, the 
route choices and the traffic counts to estimate an OD matrix. 
 
 
In the latter part of this chapter, the classification of the complete OD 
matrix estimation method that is developed in this thesis was discussed. 
This classification can be seen in Figure 4.1. 
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5. Data preparation & experimental setup 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The original FCD include only raw information about the location of the 
vehicles. This information needs to be adjusted and the data points 
mapped into the network in order to be able to work with the data. 
Furthermore, within the data there are several measurements that have 
no assigned link. That information can be cleaned out from the dataset 
and the measurements with no assigned link number hence treated as 
missing measurements. In the first part of this chapter this data 
preparation is described. 
 
In the latter part of this chapter the experimental setup of the thesis 
work is explained. 
 

5.1 Data mapping 

The FCD originally include only the coordinates of the vehicles but not 
their location within the network, i.e. position on links and nodes. 
Hence, before it is possible to process the data, they must be mapped 
to the network. Chen (2007) designed a method that maps the data 
points. This method is described below.  
  
In order to locate the measurement points in the network, the 
coordinates of the original data are converted to the coordinate system 
of the network. However, due to errors in the GPS data and the fact 
that not all roads in the study area are included in the network, the 
measurement points do not all fit exactly on a specific node. Certain 
measures have to be taken in order to assign the measurements to 
zones and links. Below, these measures are described. 
 
Zone determined 

When a measurement is detected outside the study area it is assigned a 
zone number 0 or –1. When a measurement is detected within only one 
of the 18 zones it is assigned that zone number. If a measurement is 
detected in an overlap of zones its distance from the centre of the 
zones is used to decide which zone number to use and the nearest zone 
centre’s number is assigned. 
 
Nodes and links determined 

The measurements are assigned to the nearest link. However, the 
distance from that link cannot be larger than one and half the link 
length. If it is further away, the measurement is not assigned to any 
link. A measurement can thus have assigned zone number within the 
study area, but no assigned link. The link is represented with the 
numbers of the nodes on its ends; hence two numbers from 0 (for no 
assigned link) to 66. 
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Direction and location on link determined 

The order of the nodes (i.e. which one is node 1 and node 2) indicates 
the driving direction of the vehicle. In order to determine the driving 
direction, the next and the two previous measurements have to be 
considered. 
 
When measurements are assigned to a link, they are assigned to a 
location on the link as well. This location is indicated by the distance 
from node 1 in percentage of the total length of the link. 
 
 
After the mapping, the data comprise the following information: 
 

- The vehicle number (starting with 1 and ending with the total 
number of vehicles) 

- Date (yyyymmdd) 
- Time (hhmmss) 
- Vehicle speed (km/h) 
- Zone number (-1–18) 
- Node 1 (0-66) and node 2 (0-66) (indicating the travelling 

direction) 
- Location on link (%), i.e. percentage distance from node 1.  
 

 

When the locations of the mapped data points are plotted one can see 
a rather clear picture of the network. Figure 5.1 shows a plot of the 
mapped data locations and a few node numbers.  
 
 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.1: A plot of the mapped data 
locations with a few node numbers 
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5.2 Data cleaning 

Before the data were used, all the measurements with node number 0 
were removed. Most of these measurements are from outside the study 
area but also from within, where the nearest link is too far away from 
the measurement. By doing this, measurements with no assigned links 
can be treated as missing measurements. Thus, rule 2 and 3 are 
combined.  
 
The data cleaning has two important benefits. The calculations are 
simplified and the size of the dataset is decreased.  
 
The data cleaning was performed in MATLAB and the code can be seen 
in Appendix 5, Section 9.5.1. 
 

5.3 Experimental setup 

A few decisions have to be made before the data experimenting can 
start. The part of the dataset that will be used for the work needs to be 
selected and different scenarios for the OD matrix estimation need to 
be defined. In the following two sections these issues are discussed. 
 

5.3.1. Data used for FCD processing  

As mentioned before, the FCD were collected over a period of 2 
months. It is however unnecessary to use the whole dataset for the 
experiments. Thus, data from 4 separate dates were selected for usage. 
Those dates were: May 9, May 10, June 6 and June 7, 2007.  
 
For a sensitivity analysis (see Section 6.2) all the data from 9 May and 
10 May were used. All the data from the 4 days were used in order to 
examine the traffic pattern of the taxis by comparing the trip 
distribution between days while a part of the morning peak of May 9, 
7:30-8:50, was used to examine whether the distribution of taxis over 
the network is constant over time (see Section 6.3). That same part of 
the morning period of May 9 was used for both the a-priori matrix 
estimation (see Section 6.4.1) and the route choice analysis (see Section 
6.4.2). For the TLD (see Section 6.4.3) all the data from 9 and 10 May 
was used. The data usage is listed in Table 5.1. 
 
 

 May 9 May 10 June 6 June 7 

Traffic pattern of taxis All data used All data used All data used All data used 

Distribution of taxis 

over the network 
7:30-8:50 – – – 

Sensitivity analysis All data used All data used – – 

A-priori matrices 7:30-8:50  – – 

Route choice analysis 7:30-8:50 – – – 

Trip length distribution All data used All data used – – 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.1: The data used for different 
parts of the FCD processing 
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The properties of all the used FCD can be seen in Table 5.2. 
 

Date 
Number of vehicles 

detected 

Number of 

measurements 

Number of measurements 

after data cleaning 

May 9 2.264 215.432 105.455 

May 10 2.280 233.519 115.029 

June 6 865 139.906 36.222 

June 7 2.415 381.449 95.053 

 
 
Later in this thesis, both when the a-priori matrices are constructed and 
when the estimated OD matrices are evaluated, OD matrices estimated 
with a dynamic OD matrix estimation method called REMDOE (Chen, 
1993), are used. The classification of REMDOE can be seen in Appendix 
3 – Section 9.3. Those matrices were estimated for the morning period 
of May 9. Therefore, the data from May 9 were chosen for most of the 
FCD processing. The other dates were chosen randomly.  
 

5.3.2. Scenarios of OD matrix estimation 

The real OD matrices for the study area are unfortunately not known. 
Hence, it is impossible to tell whether any OD matrix estimation is good 
or bad, but the effect that different a-priori matrices have on the 
estimation outcomes can be examined. In order to do so, five different 
a-priori matrices were used as an input for NEST and the estimated OD 
matrices and the estimated traffic volumes compared. Three of these a-
priori matrices have already been mentioned (see Section 4.1.2) the 
other two are explained below. These five a-priori matrices are: 
 

- UOD: A unit OD matrix, where all interzonal trips have the 
value 1 and all intrazonal trips the value 0 

- OFCD: see Section 4.1.2 
- PFCD: see Section 4.1.2 
- CFCD: see Section 4.1.2 
- TC: A matrix based on traffic counts and turning fractions (see 

Appendix 4 – Section 9.4) 
 
Hereafter the abovementioned acronyms will be used when the 
different a-priori matrices are discussed. 
 
Since neither historical data nor survey data exist for the study area, the 
CFCD used here is a combination of FCD and OD matrices estimated 
with the previously mentioned method REMDOE (Chen, 1993). The 
estimations done with REMDOE were made using the traffic counts and 
the TC matrices as a-priori matrices. REMDOE uses DTA for the 
mapping of the OD flows to the network. 
 
The other inputs for NEST, i.e. the route choice analysis and the traffic 
counts are kept the same for all the estimations. 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.2: Properties of the used FCD  
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5.4 Summary 

The original FCD includes information about the location of the vehicles 
in coordinates. This information does not give indication of the location 
of the vehicles within the network, i.e. in which zone and on which link 
they are located. Hence, before the data could be used, they had to be 
mapped into the network. 
 
When the data had been mapped, they include the following 
information: 
 

- Vehicle number 
- Date and time of the measurement 
- The speed of the vehicle 
- The zone in which the vehicle is located 
- The end nodes of the link on which the vehicle is located 
- The location on the link 

 
In addition to the data mapping all the measurements with no assigned 
link were removed from the dataset. By doing so, rules 2 and 3, which 
were defined in Section 4.1.1, were combined. 
 
The data used for the analyses were from May 9 and 10 and June 6 
and 7, 2007. The NEST inputs, i.e. the a-priori matrices and the route 
choice analysis were only done for a part of the morning period of May 
9. This time and day were selected in order to be able to compare the 
conclusions to estimations done another estimation method called 
REMDOE. 
 
Since the real OD matrices for the study area are not known, it is not 
possible to estimate the quality of estimated OD matrices. It is however 
possible to examine the effects which different a-priori matrices have 
on the estimated OD matrices. For this purpose, four different a-priori 
matrices were chosen, those are: OFCD, PFCD, CFCD and TC. 
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6. Results 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

In the beginning of this thesis two important questions were raised 
about whether FCD, due to their sparse nature, comprise enough 
information to build good a-priori matrices and whether they are 
representative of the whole traffic. In this chapter, these questions are 
answered.  
 
In the first part of the chapter some considerations about the rules that 
were defined in Section 4.1.1 are expressed. Following that, a 
sensitivity analysis is performed for the parameters real stop and break. 
Based on the sensitivity analysis, a final decision is made regarding the 
value of those two parameters. 
 
When the values of the two parameters have been confirmed, the 
driving behaviour of the taxis is inspected. Firstly, the difference 
between a “typical” trip distribution and the trip distribution derived 
from the FCD is investigated. Secondly, the distribution of the taxis 
over the network is examined.  
 
In Section 6.4 the estimations made with the FCD are discussed, i.e.: 
 

- A-priori matrix estimation: The effects that five different a-
priori matrices have on the OD matrix estimation are examined 
and a final decision is made regarding which matrix is best 
suited as an a-priori matrix. 

 
- Route choice analysis: The amount of OD pairs that have a 

detected route during each time period is checked. The number 
of detected routes per OD pair is also measured. 

 
- Trip length distribution: There are two different ways to 

estimate the TLD, directly from the FCD and from the 
estimated OD matrix. These two ways are tested and the 
applicability of the outcomes discussed. 

 
The last parts of this chapter discuss the complete OD matrix 
estimation method. In Section 6.5 the estimated OD matrices are 
discussed and in Section 6.6 they are compared with OD matrices 
estimated with REMDOE. 
 
All the calculations in the chapter are done either in MATLAB or Excel. 
The MATLAB codes are displayed in Appendix 5 – Section 9.5. 
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6.1 Considerations about the rules  

In rules 1, 2 and 3 (see Section 4.1.1), parameters were determined to 
define a real stop, break and when a vehicle actually leaves the study 
area. By removing the measurements with node number 0, rule 2 and 3 
were combined. The parameters are based on assumptions only. Hence, 
one might consider whether they give good results or not. Hereafter 
considerations about rule 1 and the combination of 2 and 3 are 
discussed. 
 
Rule 1 – Real stop 

The first rule is based on the assumption that it takes 2 minutes or more 
for a passenger to pay, get a receipt and exit the vehicle, while 
stopping on an intersection or in a traffic jam should not exceed 2 
minutes. However, according to a contact person in Chengdu, this 
payment procedure might not take so long. 
 
Rule 2 & 3 – Break & vehicles entering/leaving the study area 

The second rule is based on the assumption that passing a high-rise 
building and driving trough tunnels should not take more than 2 
minutes. There are two tunnels and one fly-over in the study area but 
they are all located on the edges of the network as can bee seen in 
Figure 6.1. Hence, missing measurements due to tunnels and fly-overs 
are, in this study, irrelevant. However, in the case of congestion it 
might occur that a vehicle dwells for a longer period than 2 minutes 
below a high-rise building and thus, measurements could get lost for 
more than 2 minutes. 
There are also some considerations about the assumptions made for the 
third rule. There is no guarantee that when a vehicle dwells for longer 
than 2 minutes outside the study area it has either a real stop or a 
break in the meantime. 
 
 
In order to test the validity of the parameters determined in rule 1 and 
the combined rule 2 and 3, a sensitivity analysis was performed. In the 
following section, this analysis is discussed.  
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6.1: : Fly-over and tunnels are 
located on the edges of the network 

Fly-over 

Tunnel 

Tunnel 
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6.2 Sensitivity analysis 

In order to test the validity of the decided values of the parameters real 
stop (rule 1) and break (rule 2 and 3 combined) a sensitivity analysis 
was performed. The parameters were tested separately with data 
recorded during two days, May 9 and 10, 2007. The trip distribution, 
i.e. the distribution of the number of trips per hour of the day, was 
examined as well as the total number of trips. In order to test either 
parameter, several calculations were done with a different value of 
each parameter while the other one was fixed to 2 minutes. 
 
Sensitivity of the parameter real stop 

The parameter break was fixed to 2 minutes while the parameter real 
stop was changed for each calculation. Seventeen calculations were 
performed with the value of real stop ranging from 1 minute to 1.440 
minutes (24hours). Figure 6.2 shows a comparison between the trip 
distributions for different values of the parameter real stop for the data 
collected on May 9. Figure 6.3 shows the same comparison for May 10.  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.2: The trip distribution of May 
9, with different values for the 
parameter real stop 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.3: The trip distribution of May 
10, with different values for the 
parameter real stop 
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Figure 6.4 shows how the number of detected trips on May 9 changes 
with different values of the parameter break (both in the case when 
intrazonal trips12 are included (all trips) and for interzonal trips13 only). 
Figure 6.5 shows the same for May 10. 
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From Figures 6.2-6.5 it can be concluded that variation of the 
parameter real stop will change the structure of the trip distribution 
only slightly, while the change in number of trips is quite substantial. 
The number of trips decreases when the parameter is increased until it 
stabilizes. The number becomes more or less stable when the parameter 
is set as 500 minutes and larger, and it becomes completely stable 
when the parameter approaches the size of 24 hours.  
 
Table 6.1 and Table 6.2 show the number of trips (both including and 
excluding intrazonal trips) for the different value of real stop as well as 

                                                   
12 Intrazonal trips are trips that start and end in the same zone. 
13 Interzonal trips are trips that start and end in different zones. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.4: The change in number of 
total trips on May 9 when the 
parameter real stop is varied 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.5: The change in number of 
total trips on May 10 when the 
parameter real stop is varied 
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the percentage of the trips that occur in the morning and afternoon 
peak (7:00-10:00 and 16:00-19:00). 
 
 

Break  = 2 minutes – May 9, 2007 

 All trips Interzonal trips only 

Real stop 

[min] 

Trips Morning 

peak 

Afternoon 

peak 

Trips Morning 

peak 

Afternoon 

peak 

1 13912 19% 11% 11051 18% 10% 

1,2 13830 19% 11% 11029 18% 10% 

1,5 13805 19% 11% 11036 18% 10% 

1,8 13788 19% 11% 11038 18% 10% 

2 13561 19% 11% 11100 18% 11% 

2,2 13482 19% 11% 11054 18% 11% 

5 12921 19% 11% 10756 18% 11% 

7 12825 19% 11% 10708 18% 11% 

10 12738 19% 11% 10655 18% 11% 

20 12547 19% 11% 10515 18% 11% 

30 12435 19% 11% 10426 18% 11% 

40 12343 19% 11% 10346 18% 11% 

50 12265 19% 11% 10286 18% 11% 

100 12009 19% 11% 10098 18% 11% 

500 11591 19% 11% 9775 18% 10% 

1.000 11560 19% 11% 9750 18% 10% 

1.440 11559 19% 11% 9748 18% 10% 

 
 

Break  = 2 minutes –  May 10, 2007 

 All trips Interzonal trips only 

Real stop 

[min] 

Trips Morning 

peak 

Afternoon 

peak 

Trips Morning 

peak 

Afternoon 

peak 

1 16157 12% 17% 12809 12% 16% 

1,2 16060 13% 17% 12761 12% 16% 

1,5 16014 13% 17% 12738 12% 16% 

1,8 15989 13% 17% 12740 12% 16% 

2 15540 13% 17% 12731 12% 16% 

2,2 15423 13% 16% 12664 12% 16% 

5 14748 13% 16% 12309 12% 16% 

7 14582 13% 16% 12197 12% 16% 

10 14443 13% 16% 12094 12% 16% 

20 14232 13% 16% 11931 12% 16% 

30 14069 13% 16% 11808 12% 16% 

40 13952 13% 16% 11704 12% 16% 

50 13851 13% 16% 11620 12% 16% 

100 13563 13% 16% 11399 13% 16% 

500 13052 13% 16% 10980 13% 15% 

1.000 13014 13% 16% 10949 13% 15% 

1.440 13013 13% 16% 10948 13% 15% 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.1: The change in the number 
and percentage of trips in peak periods 
on May 9, caused by variation of the 
parameter real stop 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.2: The change in the number 
and percentage of trips in peak periods 
on May 10, caused by variation of the 
parameter real stop 
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In a traffic pattern given by the OVG14 from 1996 (Centraal Bureau 
voor de Statistiek, 1997), 15,2% of the trips are made in the morning 
peak and 21,6% in the afternoon peak. The fractions derived from the 
FCD are relatively low compared to this. 
 
 

Sensitivity of the parameter break 

The parameter real stop was fixed to 2 minutes while the parameter 
break was changed for each calculation. Seventeen calculations were 
performed with the value of break ranging from 1 minute to 1.440 
minutes (24hours). Figure 6.6 shows a comparison between the trip 
distributions for different values of the parameter break for the data 
collected on May 9. Figure 6.6 shows the same comparison for May 10.  
 

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

P
er

ce
n

ta
g

e 
o

f 
to

ta
l t

ri
p

s

1
1,2
1,5
1,8
2
2,2
5
7
10
20
30
40
50
100
500
1.000
1.440

 
 

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

P
er

ce
n

ta
g

e 
o

f 
to

ta
l t

ri
p

s

1
1,2
1,5
1,8
2
2,2
5
7
10
20
30
40
50
100
500
1.000
1.440

 
 
Figure 6.8 shows how the number of trips on May 9 changes with 
different values of the parameter break, both including and excluding 
intrazonal trips. Figure 6.9 shows the same for May 10. 

                                                   
14 OVG is the Dutch Travel Diary 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.6: The trip distribution of May 
9, with different values for the 
parameter break 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.7: The trip distribution of May 
10, with different values for the 
parameter break 
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From Figures 6.6-6.9 it can be concluded that variation of the 
parameter break will change the structure of the trip distribution only 
slightly (though a bit more than when changing the parameter real 
stop) while the change in number of trips is quite substantial. 
Interestingly, the number of trips increases in the beginning when the 
parameter break is rather low. This is due to the definition that a 
measurement is neither an O nor a D if there is a break or a real stop 
both before and after it. Hence, when the break parameter is small, 
several Os and Ds are cancelled out. The number of trips becomes 
more or less stable when the parameter is set as 500 minutes and 
larger, and it becomes completely stable when the parameter 
approaches the size of 24 hours. 
 
Table 6.3 and Table 6.4 show the number of trips (both when 
intrazonal trips are included and for interzonal trips only) for the 
different value of break as well as the percentage of the trips that occur 
in the morning and afternoon peak (7:00-10:00 and 16:00-19:00). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.8: The change in number of 
total trips on May 9 when the 
parameter break is varied 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.9: The change in number of 
total trips on May 10 when the 
parameter break is varied 
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Real stop  = 2 minutes –  May 9, 2007 

 All trips Interzonal trips only 

Break [min] Trips Morning 

peak 

Afternoon 

peak 

Trips Morning 

peak 

Afternoon 

peak 

1 12043 20% 11% 8787 18% 10% 

1,2 12497 20% 11% 9219 18% 10% 

1,5 12602 20% 11% 9333 18% 10% 

1,8 12647 20% 11% 9399 18% 10% 

2 13561 19% 11% 11100 18% 11% 

2,2 13633 19% 11% 11279 18% 11% 

5 13647 18% 11% 11902 18% 11% 

7 13545 18% 11% 11911 18% 11% 

10 13402 18% 12% 11820 18% 11% 

20 12944 18% 12% 11464 18% 11% 

30 12594 18% 12% 11149 18% 12% 

40 12273 19% 11% 8787 18% 10% 

50 12069 19% 11% 9219 18% 10% 

100 11159 19% 11% 9333 18% 10% 

500 9532 20% 11% 9399 18% 10% 

1.000 9414 20% 11% 11100 18% 11% 

10.000 9412 20% 11% 11279 18% 11% 

 
 

Real stop  = 2 minutes May – 10, 2007 

 Intrazonal trips included Interzonal trips only 

Break [min] Trips Morning 

peak 

Afternoon 

peak 

Trips Morning 

peak 

Afternoon 

peak 

1 14233 13% 17% 10266 12% 16% 

1,2 14660 13% 17% 10689 12% 16% 

1,5 14700 13% 17% 10756 12% 16% 

1,8 14749 13% 17% 10845 12% 16% 

2 15540 13% 17% 12731 12% 16% 

2,2 15564 13% 16% 12921 12% 16% 

5 15198 13% 16% 13282 12% 16% 

7 14936 13% 16% 13135 12% 16% 

10 14713 13% 16% 12952 12% 16% 

20 14098 13% 16% 12452 12% 16% 

30 13634 13% 16% 12051 13% 16% 

40 13276 13% 16% 11755 13% 16% 

50 12982 14% 16% 11498 13% 16% 

100 11933 15% 16% 10603 14% 16% 

500 10208 16% 16% 9135 15% 16% 

1.000 10060 15% 16% 9024 15% 16% 

10.000 10059 15% 16% 9023 15% 16% 

 
 
The fractions in the tables above, derived from the FCD, are in most 
cases relatively low compared to the previously mentioned fractions 
given by the OVG from 1996. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.3: The change in the number 
and percentage of trips in peak periods 
on May 9, caused by variation of the 
parameter break 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.4 The change in the number 
and percentage of trips in peak periods 
on May 10, caused by variation of the 
parameter break 
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6.2.1. Conclusions 

The sensitivity analysis of the parameters real stop and break shows 
that the value of both parameters does not have a great effect on the 
trip distribution. They, however, affect the total number of trips 
considerably.  
 
When an a-priori matrix is constructed, it can be scaled up to match the 
total amount of traffic. Hence, the trip distribution is of more 
importance than the total number of trips. The route choice analysis is 
based on the location of the vehicles and the values of the parameters 
do not have any effect on that. The values of these parameters have 
the largest impact on the TLD.  
 
Since the main topics of this thesis are the a-priori matrix estimation 
and the route choice analysis, it is concluded that the values of the 
parameters should be kept as they were in Section 4.1.1, both at 2 
minutes.  
 
In order to eliminate all doubts about when trips are really beginning 
and ending, additional information from the FCD is required, i.e. 
information about the vehicle’s occupancy. That would considerably 
increase the reliability of the information derived from the FCD. 
  

6.3 The driving behaviour of taxis 

One of the two important questions that were raised in the beginning 
of this thesis is whether data from taxis are representative for the whole 
traffic. A large part of the traffic in China consists of taxis, yet it is 
highly likely that their driving behaviour differs from the driving 
behaviour of the common driver. 
 
An example of a “typical” trip distribution15 can be seen in Figure 6.10, 
while the trip distributions derived from the FCD of 4 different days 
(May 9 and10, June 6 and 7) can be seen in Figure 6.11. Clearly there 
is a considerable difference between the “typical” distribution and the 
FCD distribution. However, from Figure 6.11 it can be seen that the 
FCD trip distribution is rather consistent between days. The distribution 
of May 9 differs from the other distributions in the afternoon period, 
but apart from that the difference between those days is not large. 
From this it can be concluded that these distributions are “typical” taxi 
trip distributions and therefore outcomes from the FCD analyses should 
be consistent between days. 

                                                   
15 Given by the OVG from 1996 (Centraal Bureau voor de Statistiek, 1997)  
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The “typical” trip distribution above comes from a Dutch survey done 
by the CBS16, thus it might indeed differ from the situation in the study 
area. If a similar kind of survey were done for the study area and a 
“typical” trip distribution constructed, it would perhaps be possible to 
use that trip distribution to scale the FCD so they would match the total 
traffic. 
 
Another thing that can be examined regarding the driving behaviour of 
taxis is whether their distribution over the network is consistent over 
time. For the FCD collected on May 9, the taxis on the links were 
counted and compared with the traffic counts. Figure 6.12 shows this 
comparison, i.e. the ratio between taxis and traffic counts for 10-
minute time slices on the 47 links that have traffic counts. According to 
this, the distribution of taxis over the network is consistent over time. 

                                                   
16 Centraal Bureau voor de Statistiek 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.10: A “typical” trip distribution 
in the Netherlands 
Given by the OVG of 1996 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.11: Traffic pattern from the 
FCD of 4 different days 
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However, the ratio varies quite considerably, from 3% to 406%. That 
indicates that taxis are taking different routes than the other vehicles. 
There are two links where the amount of taxis is fairly larger than the 
volumes given by the traffic counts. This might be caused by 
congestion on those links. Under those circumstances the vehicles move 
slowly over the link (hence, no break or real stop occurs), which can 
result in the repetition of the link within the path and thus, an 
overestimation of the taxis on that link. The important thing is though 
that over the considered time period (which is a peak period) this is 
constant. 
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6.4 Estimations made with the FCD 

In this section the three different estimations made with the FCD are 
discussed, i.e. the a-priori matrix estimation, the route choice analysis 
and the TLD. 
 

6.4.1. A-priori matrix estimation 

In Section 4.1.2, three different ways of building an a-priori matrix 
from the FCD were discussed: 
 

- OFCD: The original FCD OD matrix 
- PFCD: The original FCD OD matrix with the value 1 inserted 

where values are missing 
- CFCD: The original FCD OD matrix with scale and missing 

measurements adjusted by using another matrix from the study 
area 

 
In the before mentioned section, some doubts were expressed about 
the first two ways and hence the third one was suggested. Here, the 
complete matrices, used for the construction of CFCD, are estimated 
with REMDOE (Chen, 1993). In this section, the effects that these 
different a-priori matrices have on the OD matrix estimation are 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.12: The ratio between the 
number of taxis on links and traffic 
counts on links for 10 minutes time 
slices in the morning of May 9, 2007 
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examined. Furthermore, the effects from a unit matrix, UOD, and 
another a-priori matrix, TC, are tested. 
 
Table 6.5 shows how many iterations NEST performs before 
convergence is reached between the flows in the estimated OD matrix 
and the counted flows (with maximum relative error set as 0,25). In the 
case of the OFCD, the estimation nearly always stops due to non-
converging iterations or because the a-priori matrix gives 0 volumes on 
counted links. Thus, it is clear that the information from the FCD alone 
is not sufficient to build a good a-priori matrix. The other estimations 
are all completed.  
 

Time Slice UOD OFCD PFCD CFCD TC 

7:30-7:39 16 Stopped 16 15 15 

7:40-7:49 13 Stopped 9 7 5 

7:50-7:59 5 Stopped 5 5 5 

8:00-8:09 6 Stopped 7 7 8 

8:10-8:19 7 Stopped 7 8 8 

8:20-8:29 7 Stopped 7 6 8 

8:30-8:39 19 19 14 18 17 

8:40-8:49 3 Stopped 3 3 4 

Total 

7:30-8:49 
9 12 9 9 10 

 
The iteration speed does not give an indication about the quality of the 
a-priori matrix. Hence, the number of trips was also considered. The 
total number of trips in both the a-priori matrices and the estimated 
OD matrices of all the time slices can be seen in Table 6.6. 
 

Number of trips 

UOD OFCD PFCD CFCD TC 

Time Slice A-

priori 
OD 

A-

priori 
OD 

A-

priori 
OD 

A-

priori 
OD 

A-

priori 
OD 

7:30-7:39 306 5.056 107 X 338 5.172 5.086 5.453 7.192 5.234 

7:40-7:49 306 5.192 111 X 341 5.186 6.514 5.491 7.874 5.578 

7:50-7:59 306 5.602 119 X 354 5.615 8.328 5.607 7.990 5.518 

8:00-8:09 306 5.610 117 X 351 5.679 7.125 5.934 8.181 5.760 

8:10-8:19 306 6.252 119 X 349 6.300 8.129 7.001 8.476 6.471 

8:20-8:29 306 5.908 128 X 364 5.841 6.889 5.763 8.461 5.996 

8:30-8:39 306 5.538 116 5.516 352 5.528 8.135 5.536 8.209 5.183 

8:40-8:49 306 5.702 88 X 334 6.045 10.204 6.319 7.727 5.875 

Total 

7:30-8:49 
306 27.764 905 28.184 2.783 28.036 60.411 28.315 64.110 26.953 

 

When the numbers in the table above are examined, it is clear that the 
different a-priori matrices do not influence the number of estimated 
trips. That is due to the fact that NEST normalizes the a-priori matrices. 
Thus, the structures of the 5 different estimated OD matrices were 
examined. The estimated matrices resulting from using CFCD were 
used as a base for the comparison, i.e. they were compared with the 
structure of all the other matrices.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.5: The number of iterations 
necessary for the OD matrix estimation 
of each time slice with different a-priori 
matrices 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.6: The number of trips in both 
the a-priori matrices and the estimated 
OD matrices 
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In order to compare the structure of two matrices the following 
equation is used. 
 

 













⋅

+
−

2
%%

%%

B
ij

A
ij

B
ij

A
ij

TT

TT
abs  (6.1) 

 
In order to get Tij

A% and Tij
B%, each value in both matrices is divided 

with the matrix’s total number of trips, i.e. the two matrices are 
normalized. Then the difference between each corresponding value 
within the two matrices is divided with the average of both values. By 
applying this equation, large differences between two values approach 
the value 2. If the difference is e.g. 3 fold, the equation gives the value 
1. Table 6.7 shows which value equation (6.1) gives for different 
proportional differences between two corresponding matrix values.  
 
 

Proportional difference between 

corresponding cells,  

if Tij
A%>Tij

B%: (Tij
A%/Tij

B%)  
if Tij

B%>Tij
A%: (Tij

B%/Tij
A%) 

Value from 

equation (6.1) 

1 0,00 

2 0,67 

3 1,00 

4 1,20 

5 1,33 

10 1,64 

15 1,75 

20 1,81 

30 1,87 

40 1,90 

50 1,92 

60 1,93 

70 1,94 

80 1,95 

90 1,96 

100 1,96 

300 1,99 

500 1,99 

1000 2,00 

 
Figures 6.13-6.16 show the comparisons of the estimated OD matrices 
of the seventh time slice, 8:30-8:39. The squares in the figures 
represent an OD pair and the colours represent the value calculated 
with equation (6.1). The rest of the comparison figures as well as 
comparison plots, where the values of each matrix cells are plotted 
using two axes for the two matrices, can be seen in Appendix 6 – 
Section 9.6. 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.7: The values from equation 
(6.1) for different proportional 
differences 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . 
Figure 6.13: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 8:30-8:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . 
Figure 6.14: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
OFCD. Time period 8:30-8:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . 
Figure 6.15: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:30-8:39 
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In the figures above, blue colour indicates a small structural difference 
between the cells of the two matrices while red colour indicates a large 
difference. When the figures are examined it can be seen that the 
different a-priori matrices do indeed influence the structure of the 
estimated OD matrix. 
 
From this it can be concluded that when more information is included 
in the a-priori matrix it must lead to a better OD matrix estimation. 
Since the FCD alone are not enough to build a useable a-priori matrix, 
combining it with e.g. historical data or survey data should lead to a 
better result. Thus, the CFCD are best suited as a-priori matrices. 
 

6.4.2. Route choice analysis 

The numbers of trips detected on the 4 days considered are the 
following: 
 

- May 9: 13.561 trips 
- May 10: 15.540 trips 
- June 6: 4.427 trips 
- June 7: 12.769 trips 

 
Table 6.8 shows the number of trips detected during each time slice for 
those 4 days, both the total number of trips and the interzonal trips 
only.  
 

 May 9 May 10 June 6 June 7 

Time slice Total 
Inter- 

zonal 
Total 

Inter- 

zonal 
Total 

Inter- 

zonal 
Total 

Inter- 

zonal 

7:30-7:39 124 107 47 41 39 34 92 77 

7:40-7:49 142 111 59 52 44 39 97 83 

7:50-7:59 140 119 64 56 33 29 147 120 

8:00-8:09 158 117 72 60 45 34 128 103 

8:10-8:19 157 119 81 59 58 47 120 88 

8:20-8:29 184 128 69 45 42 26 151 98 

8:30-8:39 166 116 107 79 43 29 142 104 

8:40-8:49 136 88 178 127 46 41 158 119 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.16: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:30-8:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.8: The number of detected trips 
in the morning of 4 days 
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For all the OD pairs detected in the FCD within each time slice, the 
route choice was analysed as described in Section 4.1.3. After the 
shortest paths have been inserted for the missing OD pairs and the 
value of pij

a has been calculated, the routes can be used directly as an 
input for NEST.  
 
For a proper dynamic mapping of the OD flows into the network, 
relatively many OD pairs need to have detected routes and preferably 
more than one. Table 6.9 shows, for the 4 days, the proportion of OD 
pairs that have detected routes during each time period. 
 

 Percentage of OD pairs with detected routes 

Time slice May 9 May 10 June 6 June 7 

7:30-7:39 24,5% 10,5% 9,5% 17,0% 

7:40-7:49 24,8% 14,4% 9,8% 18,3% 

7:50-7:59 23,2% 13,4% 7,5% 21,6% 

8:00-8:09 23,5% 15,0% 10,1% 20,9% 

8:10-8:19 24,8% 13,4% 9,8% 15,0% 

8:20-8:29 22,9% 12,7% 7,8% 19,6% 

8:30-8:39 22,9% 19,0% 7,2% 19,6% 

8:40-8:49 19,6% 26,1% 8,2% 22,5% 

Total 7:30-

8:49 
66,3% 54,2% 33,7% 52,3% 

 
The highest percentages in the table above are just around 25%, which 
means that minimum 75% of OD flows are mapped into the network 
with calculated shortest paths.  
 
Table 6.10 shows which percentages of OD pairs in the morning of 
May 9 have a certain amount of detected routes. The OD pairs with no 
detected routes are left out of the calculations. For all time slices, the 
majority of OD pairs with detected routes has only 1 detected route.  
 

 Number of detected routes per OD pair 

Time slice 1 2 3 4 5 6 7 8 

7:30-7:39 74,7% 17,3% 4,0% 0,0% 2,7% 1,3% 0,0% 0,0% 

7:40-7:49 69,7% 14,5% 15,8% 0,0% 0,0% 0,0% 0,0% 0,0% 

7:50-7:59 62,0% 21,1% 9,9% 4,2% 0,0% 2,8% 0,0% 0,0% 

8:00-8:09 69,4% 13,9% 6,9% 5,6% 2,8% 1,4% 0,0% 0,0% 

8:10-8:19 69,7% 14,5% 9,2% 5,3% 0,0% 0,0% 1,3% 0,0% 

8:20-8:29 62,9% 15,7% 8,6% 8,6% 1,4% 0,0% 1,4% 1,4% 

8:30-8:39 70,0% 12,9% 8,6% 2,9% 2,9% 1,4% 1,4% 0,0% 

8:40-8:49 73,3% 18,3% 1,7% 3,3% 1,7% 1,7% 0,0% 0,0% 

Total 7:30-

8:49 
38,2% 18,5% 16,3% 10,7% 3,4% 4,5% 6,7% 1,7% 

 
From this discussion, it can be concluded that the FCD alone do not 
comprise enough information to analyse the route choice. In this thesis, 
the calculated shortest paths are used to compensate for the lack of 
information.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.9: The percentage of OD pairs 
with detected routes per time slice 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.10: The proportion of OD pairs 
with a certain amount of detected trips 
on May 9 
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6.4.3. Trip length distribution 

In Section 4.1.4 two possible ways to get the TLD were mentioned: 
directly from the detected trips within the FCD and from the estimated 
OD matrices, using the calculated shortest paths. Following is a 
discussion concerning these two methods.  
 
TLD obtained directly from FCD 

Figure 6.17 shows the TLD of the FCD from May 9 and 10 as well as a 
“typical” TLD given by the OVG from 1996 (Centraal Bureau voor de 
Statistiek, 1997). Figure 6.18 shows a close-up of the TLD for all trips 
shorter than 50 km. Table 6.11 shows the numerical values that are 
plotted in the figures. The shape of the TLD is very consistent between 
the two days but it differs considerably from the OVG TLD. The 
proportion of short trips is much higher in the FCD than given by the 
OVG. This difference can be understood when considering the study 
area. The size of the study area is only about 6 km2   and a trip is 
assumed to begin or end when a vehicle leaves or enters the study 
area. Furthermore, the longest computed shortest trip is only 3,5 km 
(between zone 9 and zone 4). It is therefore logical that within this 
area, short trips are overestimated. In order to get a TLD that resembles 
the one given by OVG, the study area needs to be enlarged.  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.17: The trip length distribution 
for all the trips of May 9 and 10 and the 
trip length distribution given by the 
OVG from 1996 
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Trip length [km] May 9 May 10 OVG 

0-1 19,28% 18,54% 3,55% 

1-1,5 21,69% 20,19% 18,18% 

1,5-5 43,63% 45,46% 16,89% 

5-10 10,87% 11,51% 20,66% 

10-15 3,08% 2,86% 11,04% 

15-20 0,93% 0,92% 6,65% 

20-30 0,43% 0,41% 10,26% 

30-40 0,05% 0,04% 4,12% 

40-50 0,01% 0,02% 2,31% 

50-75 0,01% 0,02% 3,26% 

75-100 0,01% 0,01% 1,39% 

100-150 0,00% 0,01% 1,14% 

150-200 0,01% 0,00% 0,39% 

200-300 0,01% 0,00% 0,17% 

 
 
TLD calculated from estimated OD matrices 

When the TLD is calculated from the estimated OD matrix, the same 
problem exists as before. Since the calculated shortest paths are used to 
estimate the TLD, the trips in the TLD can maximum equal the longest 
calculated shortest path, which here is only 3,5 km. The same applies 
here as in the former method; if the study area would be bigger, the 
TLD would most probably resemble the OVG data from 1996 (Centraal 
Bureau voor de Statistiek, 1997) more closely.  
 
Table 6.12 and Figure 6.19 show the TLD calculated for the estimated 
OD matrix of May 9. There is some consistency between the patterns 
of the different time slices but this information is probably not enough 
to be of any use. 
 

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 
Figure 6.18: The trip length distribution, 
of all trips shorter than 50 km, for all 
the detected trips of May 9 May 10 and 
the trip length distribution given by the 
OVG from 1996 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.11: The trip length distribution 
of May 9, May 10 and given by the 
OVG from 1996 
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Trip length 

[km] 

7:30-

7:39 

7:40-

7:49 

7:50-

7:59 

8:00-

8:09 

8:10-

8:19 

8:20-

8:29 

8:30-

8:39 

8:40-

8:49 

0-0,5 0,86% 0,88% 1,15% 1,17% 0,78% 1,03% 1,54% 1,93% 

0,5-1 3,19% 3,92% 3,54% 3,94% 5,46% 3,94% 3,50% 4,30% 

1-1,5 3,73% 2,61% 2,81% 2,38% 3,67% 2,17% 2,20% 2,40% 

1,5-2 2,42% 2,25% 2,99% 3,37% 3,02% 2,88% 2,65% 2,90% 

2-2,5 1,01% 1,40% 0,98% 1,16% 1,70% 1,77% 1,33% 1,27% 

2,5-3 0,31% 0,49% 0,31% 0,48% 0,22% 0,32% 0,49% 0,55% 

3-3,5 0,04% 0,11% 0,13% 0,10% 0,01% 0,12% 0,04% 0,06% 

 
 

 

6.4.4. Conclusions 

From Figures 6.12-6.15 it can be seen that different a-priori matrices 
do indeed influence the structure of the estimated OD matrices. Hence, 
it can be concluded that the more information the a-priori matrices 
comprise, the better the estimation will be. Since the FCD alone is not 
enough to build a useable a-priori matrix, combining it with another 
source of information like for instance historical data or survey data 
should give a good result. In this thesis, neither historical data nor 
survey data exist. Thus, OD matrices estimated for the same time 
periods with REMDOE are used.  
 
When the route choices are analysed, it appears that when the time 
periods are 10 minute long, only a small fraction (at best 25%) of the 
OD pairs have a detected route, and most of them only one. The 
missing routes thus need to be compensated. This is done by assigning 
the calculated shortest paths to the OD pairs with no detected routes. 
 
For both methods of estimating the TLD, the short trips are most likely 
overestimated. That is due to the limited size of the study area. In order 
to get a better TLD, the study area needs to be enlarged. With a better 
TLD it would be possible to scale the a-priori matrices or the estimated 
OD matrices so that they fit a “typical” TLD, and hence the whole 
traffic.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.12: The trip length distributions 
of each time slice calculated from the 
estimated OD matrices of May 9 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.19: The trip length distributions 
of each time slice calculated from the 
estimated OD matrices of May 9 
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6.5 The complete OD matrix estimation method 

OD matrix estimations were made using the program NEST, with traffic 
counts, FCD route choice and different a-priori matrices as input. Table 
6.6 displayed the estimated flows. If this information is examined, one 
might notice a striking difference between the summed number of 
estimated trips of each time slice and the number of estimated trips for 
the whole time period. Table 6.13 shows these numbers. In all cases, 
the summed number of estimated trips is about 60% larger than the 
estimated trips of the whole time period. This large difference is caused 
by the fact that NEST performs static OD matrix estimations. In static 
estimation methods, it is assumed that all trips that start within a time 
period also end within that same time period. Thus, when the 
estimation is done in small consecutive time steps (as in this case) there 
is a risk of counting the same trips more than once and thus 
overestimating the number of trips. This is a common problem of all 
static OD matrix estimation methods. One way to eliminate this 
problem would be to extend the network to a STEN network. That is 
however not done here. 
 

 UOD PFCD CFCD TC 

Summed from all 

time slices 
44.860 45.366 47.104 45.615 

Estimated for 

whole period 
27.764 28.036 28.315 26.953 

 
 
When the trip lengths from the FCD of May 9 are examined it is 
possible to calculate the chance that a trip exceeds the time frame of 
10 minutes. The measured trip lengths from the FCD are rounded to 
the nearest integer and counted. It is assumed that the departure times 
are uniformly distributed and using that assumption the chance that a 
trip of a certain length exceeds the time frame is calculated. The chance 
that the measured trips exceed the time frame is then the product of 
the percentage of total trips and the previously mentioned chance. 
Table 6.14 shows these calculations. The total chance that a trip 
exceeds the time frame is, according to these calculations, 40%. The 
reason why this is lower than 60% might be due to the fact that 16% 
of the measured trips are longer than 20 minutes (two time periods) 
and those are thus counted more than twice. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.13: The number of summed and 
total trips for the whole period 
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Trip time 

[min] 
Number of trips 

Percentage of 

total trips 

Chance that trip 

of this length 

exceeds the time 

frame 

Chance that 

measured trips 

exceed the time 

frame 

0 114 1% 0% 0,0% 

1 2.911 27% 10% 2,7% 

2 2.280 21% 20% 4,2% 

3 1.316 12% 30% 3,7% 

4 837 8% 40% 3,1% 

5 522 5% 50% 2,4% 

6 328 3% 60% 1,8% 

7 214 2% 70% 1,4% 

8 164 2% 80% 1,2% 

9 89 1% 90% 0,7% 

10 70 1% 100% 0,6% 

>10 1.971 18% 100% 18,2% 

Total 10.816 100%  40,1% 

 

6.6 Comparison with another method  

Due to the fact that the “true” OD matrix is not known, it is very hard 
to say whether estimated OD matrices are good or not. They can 
however be compared with matrices estimated with another method.  
 
The comparison method is the before mentioned dynamic OD matrix 
estimation method REMDOE and its input data are traffic counts and 
the TC a-priori matrices. 
 
The OD matrices that are compared with the REMDOE OD matrices are 
estimated with the developed OD matrix estimation method, using the 
traffic counts, the CFCD a-priori matrices and the FCD route choices 
combined with calculated shortest paths as input. 
 
Table 6.15 shows the number of trips estimated for all the time slices 
using the two different methods. The information of Table 6.15 is 
plotted in Figure 6.20. REMDOE nearly always estimates a higher 
number of trips but the patterns in Figure 6.20 do share some 
similarities. 
  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.14: The calculations of the 
chance that the trips detected within 
the FCD exceed the time frame of 10 
minutes 
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 Number of estimated trips 

Time slice Developed method REMDOE 

7:30-7:39 5.453 5.086 

7:40-7:49 5.491 6.514 

7:50-7:59 5.607 8.328 

8:00-8:09 5.934 7.125 

8:10-8:19 7.001 8.129 

8:20-8:29 5.763 6.889 

8:30-8:39 5.536 8.135 

8:40-8:49 6.319 10.204 

Total 7:30-8:49 5.453 5.086 
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In order to compare the structure of the estimated OD matrices, 
equation 6.1 was used in the same way as in Section 6.4.1. Figure 6.21 
shows the difference of the two matrices (the figures from the other 
time slices as well as comparison plots can be found in Appendix 7 – 
Section 9.7). Judging from those figures, there is not much similarity 
between the structures of the OD matrices estimated with these two 
different methods. However, as was mentioned before, since the 
“true” matrix is not known, it is impossible to tell which method gives 
better results. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.15: The number of estimated 
trips per time slice from the two 
different methods 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.20: The number of estimated 
trips from the two different methods 
shown graphically 
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6.7 Summary and answers to questions 

In the beginning of this thesis the following two questions were raised: 
 

Are data coming from taxis representative for the 

whole traffic, and if not, can the bias be estimated and 

adjusted? 

 
Do FCD comprise enough information to build a good 

a-priori matrix and do they give sufficient information 

about the route choice and the TLD? 

  
In this chapter, those questions are answered. Hereafter the answers 
are summarized. 
 
When the distribution of the trips detected within the FCD is compared 
with a “typical” trip distribution, it is evident that they differ quite 
considerably. The trip distribution of the FCD is however rather 
consistent between days and thus, outcomes from FCD analysis should 
be consistent as well. If the “typical” trip distribution for the study area 
would be known, it might be used to scale the outcomes of the FCD 
analyses or the estimated OD matrix. Another way to scale these 
outcomes would be to match the TLDs to a “typical” TLD, but in order 
to be able to do that, the study area needs to be of a considerable size. 
 
Concluding, the answer to the former question is:  
 

No, data from taxis is not representative for the whole 

traffic, but the bias can be adjusted for. 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.21: Comparison between OD 
matrix estimated in this report and OD 
matrix estimated with REMDOE. Time 
period 8:30-8:39 
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Five different a-priori matrices were tested as an input for NEST. Those 
matrices were: UOD, OFCD, PFCD, CFCD and TC. 
 
All the estimations resulted in estimated OD matrices except the one 
that used OFCD, i.e. the original matrices derived from the FCD. Thus, 
it is clear that the information included in FCD alone is not enough to 
construct a good a-priori matrix. The structure of the successfully 
estimated OD matrices differs when different a-priori matrices are used. 
It is concluded that the more information comprised in the a-priori 
matrices the better the estimation must be. 
 
When 4 days are examined, at most 25% of the OD pairs have a 
detected route during a time period of 10 minutes. This means that at 
least 75% of the OD flows need to be mapped in another way. In this 
thesis this is done with calculated shortest path.  
 
The TLD was done in two ways. In both cases, the conclusion was that 
the study area was too small to get a good TLD. 
 
The answer to the latter question is thus: 
 

No, FCD do neither comprise enough information to 

build a good a-priori matrix nor analyse the route 

choice. Other information sources, for instance 

historical data or survey data for the a-priori matrix 

estimation and calculated shortest path for the route 

choice analysis, need to be combined with the FCD. As 

mentioned before, in order to get a good TLD, the 

study area needs to be relatively large. 

 
 
Apart from answering the two questions above, this chapter included a 
sensitivity analysis that confirmed that the values of the parameters real 
stop and break should be 2 minutes. 
 
Furthermore, the difference in number of estimated trips when 
estimating in short consecutive time slices and estimating for the whole 
time period at once was discussed. Since NEST performs a static OD 
matrix estimation there is a risk of an overestimation of trips when the 
estimation is done in time slices. In this case, the trips are overestimated 
by around 60%. 
 
In the last section of this chapter, the OD matrices estimated with the 
developed method (using the CFCD matrices for a-priori matrices, the 
combination of FCD routes and calculated shortest paths for the 
mapping and the traffic counts) were compared with OD matrices 
estimated with REMDOE (using TC for a-priori matrices, DTA for 
mapping and the traffic counts). The differences were considerable, but 
there is unfortunately no way to tell which ones are better, since the 
“true” matrices are not known. 
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7. Conclusions and suggestions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The main goal of this thesis work was to develop a new method that 
uses FCD to estimate OD matrices that can be used as a-priori matrices 
for OD matrix estimation. The purpose is to increase the quality of the 
input for OD matrix estimation and hence the estimation itself. 
Furthermore, methods that analyze route choices and TLD from FCD 
were developed and a complete OD matrix estimation method that 
uses the FCD a-priori matrices and route choices was developed. 
 
In this chapter, those goals are returned to in a summary of the 
research findings and some practical recommendations for further 
research are suggested. 
 

7.1 Research findings 

The research findings of this thesis will be summarized in the following 
sections. 

7.1.1. Rules for determining origins and destinations within FCD 

Based on a few assumptions, rules were created in order to define the 
measurements within the FCD that correspond to Os or Ds. Those rules 
are the following:  
 
Rule 1 

A stop is considered to be a real stop if the measured speed is 0km/h 

for 2 minutes or more. Stops that last less then 2 minutes are 

considered to be intermediate stops. Thus, the last measurement 

before a real stop is an O and the first measurement after a real stop 

is a D. 

 
Rule 2 

When the time between two measurements exceeds 2 minutes it can 

be assumed that the driver has taken a break. Consequently, the last 

measurement before the break is a D and the first measurement after 

the break is an O.  
 
Rule 3 

The first measurement with speed larger than 0 km/h that is detected 

from a vehicle after it enters the study area is an O. The last 

measurement with speed larger than 0 km/h that is detected from a 

vehicle before it leaves the study area is a D. A vehicle is defined to 

be outside the study area if it dwells there for 2 minutes or longer. 
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Rule 4 

The first measurement with speed larger than 0 km/h that is detected 

from a vehicle is an O. The last measurement with speed larger than 0 

km/h that is detected from a vehicle is a D. 

 

By dismissing all measurements with no assigned links, rules 2 and 3 
were combined. These rules were confirmed with a sensitivity analysis. 
 

7.1.2. A-priori matrices estimated from FCD 

A-priori matrices that are derived from the FCD for 10 minute time 
periods are by nature considerably sparse and their volumes are low. 
That is due to the fact that the data come from taxis, which are only a 
fraction of the whole traffic. 
 
When those original OD matrices are used as a-priori matrices the 
estimation procedure nearly always discontinues due to zero values in 
the a-priori matrix where traffic counts are given or because of non-
converging calculations. It is thus clear that the FCD alone do not 
comprise enough information to serve for good a-priori matrix 
estimations. Hence, the a-priori matrices are constructed with a 
combination of FCD and historical data, survey data or matrices 
estimated with other methods. Traditionally, the a-priori matrices are 
based on those two sources alone, but by doing this, the information 
included in the a-priori matrix is optimized. 
 

7.1.3. Route choice analysis with FCD 

For the route choice analysis, the same applies as for the a-priori matrix 
estimation; the FCD alone do not comprise enough information. When 
the route choices are examined for 10 minute time period, only a 
maximum of 25% of the OD pairs have a detected route and the 
majority of those only one route. The missing routes thus need to be 
compensated in some way. This was done with computed shortest 
path.  
 

7.1.4. Trip length distribution analysis with FCD 

The TLD derived from the FCD is very consistent between days but due 
to the limited size of the study area, short trips are overestimated. The 
same applies for the TLD derived from estimated OD matrices. 
 
In this thesis the TLD is only examined but not used for practical 
purposes. With improved TLD it might be possible to scale the 
estimated OD matrices so that they match the whole traffic. 
 

7.1.5. The complete OD matrix estimation method 

The problem of the suggested complete OD matrix estimation method 
is that when the static method is extended to a dynamic one (by doing 
the estimations in small time slices) the number of trips is overestimated 
by around 60%. This is caused by some trips starting in one time period 
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and ending in another, consequently those are counted more than 
once. 
  

7.2 Conclusions 

From this thesis work it can be concluded that it is surely feasible to use 
FCD for a-priori matrix estimation, route choice analysis and TLD 
analysis. However, since the FCD are only sample data, they by 
themselves are mostly not sufficient. The a-priori matrix estimation 
needs to be made with a combination of e.g. historical data or survey 
data (traditional a-priori matrices) and FCD. In that way the 
information in the a-priori matrix is maximized. Furthermore, when the 
routes are examined, only a fraction of the OD pairs has a detected 
route while the rest needs to be compensated in some way. 
 
These facts do not mean that using FCD for the abovementioned 
purposes is pointless. The FCD is current data, and thus, combining it 
with traditional input must increase its quality and lead to better OD 
matrix estimations. Due to the lack of knowledge of the real OD 
matrices it is however not possible to say whether the methods 
developed in this thesis are reliable.  
  

7.3 Suggestions for further research 

In the following discussion a few suggestions are made for further 
research. 
 
Improving the FCD 

Even though the rules for determining origins and destinations within 
the FCD were confirmed with a sensitivity analysis, it is certain that 
they do not give completely correct information about the real Os and 
Ds within the data. Thus, it is suggested that for further research, 
additional information should be added to the FCD. That information is 
regarding the occupancy of the taxis. With that information, there will 
be no doubt when a trip is beginning and ending. This would result in 
more reliable outcomes from the FCD analyses. 
 
Involving DTA 

In the thesis it was shown that the information included in the FCD 
alone is neither enough for the a-priori matrix estimation nor the route 
choice analysis. The only solution to this, is equipping more vehicles as 
probe-vehicles. Besides, more diverse probe-vehicles would also 
improve the reliability of the data. In the future, this might become the 
case, but at the moment, matters such as privacy issues prevent it from 
happening. Hence, in order to compensate for the lack of information, 
measures like those described in this thesis need to be taken. In the 
case of the route choice analysis, calculated shortest paths were used 
for the mapping of OD flows with no detected routes. Thus, the 
mapping is done in a mixture of dynamic and static way. Since a large 
part of the OD pairs do not have a detected route, the major part of 
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the mapping is static. It is thus suggested that the missing routes 
should be estimated with DTA. Furthermore, when there is only one 
trip detected between two zones, that trip is used for the mapping, 
regardless of whether it is logical or not. It would probably give better 
results to include at least one estimated route as well.  
 
Enlarging the network 

The largest problem discovered in this thesis regarding the TDL, is that 
the study area is simply too small to get a good estimate. The TDL can 
possibly be used to scale the OD matrices so that they match the real 
traffic. It is suggested that, before further research in that field is 
performed, data from a larger area should be gleaned.  
 
Extending the network 

In order to avoid the overestimation of trips due to the small time slices 
used in the developed OD matrix estimation, the network can be 
extended to a STEN network. Making the time slices larger (e.g. 15-20 
minutes) can also improve the estimations, but that would make the 
method less dynamic.  
 
Finding the true OD matrices 

Finally, in order to examine the reliability of the methods developed in 
this thesis, it is suggested that the real OD matrices should be 
discovered. One way to do so is to trace the traffic manually through 
the study area. Doing that might cost al lot of man-hours but that 
would provide a way to check the reliability of all the developed 
methods. This information can also be used for further development of 
the methods.  
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9. Appendices 
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9.1 Appendix 1: The recurrence model of platoon 

dispersion 

In Bell (1991b) the recurrence model of platoon dispersion is described 
in the following manner: 
If we let 
 

 qi(t) = the traffic flow measured by the detector at entrance i 
to the junction or network, 

 yj(t) = the traffic flow measured by the detector at exit j from 
the junction or network, 

 bij = the proportion of traffic from entrance i destined for 
exit j, 

bijk = the proportion of traffic from entrance i destined for 
exit j with a travel time, when truncated, of k intervals, 

αj = the platoon dispersion factor for exit j, and 
d = a discount factor applied to the sum of squared errors (0 ≤ 

d ≤ 1). 
 
Then the following vectors exist: 
 
 q(t) = [q1(t), q2(t),…]T 
 bj = [b1j, b2j,…]T 
 bjk = [b1jk, b2jk,…]T 

 0 = [0, 0, …]T 
 
When it is assumed that the fastest vehicles reach the exit from any 
entrance within 1 interval and that for each exit there is a single travel 
time distribution of geometric form, then the following recurrence 
model of platoon dispersion applies 
 

 )()1()1( ttyy T
jjjjj qbαα +−−=  for each exit j. (A1.1) 

 
This model has formed an important component of traffic models since 
it was first introduced in the TRANSYT network optimization program 
(Bell, 1991b). 
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9.2 Appendix 2: Space-time extended networks 

A Space-Time Extended Network (STEN) represents time explicitly by 
having a layer of all nodes of the network for each relevant departure 
time interval17. In Figure 9.1 an example of STEN is showed. 
 

 
Each level in STEN represents a departure time interval, thus the 
amount levels are equal to the amount of times that there are 
departure time intervals that have influence on the current detector 
counts. When traffic travels between two nodes within the same time 
interval, horizontal links are used between the nodes. If the travel time 
exceeds the time interval, the nodes are connected with a diagonal link.  
When networks are represented with STEN, dynamic OD matrix 
estimation problems can be restated as static OD matrix estimation 
problems on the STEN network. This method allows the extension of 
almost all the static formulations without any changes in their 
underlying logic. The only changes are the network that they operate 
on. This method is therefore rather flexible (Vukovic, 2007). 
 

                                                   
17 Relevant intervals are the time intervals in which detector counts are generated during the 

current measurement interval. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.1: Space-time extended 
network 
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9.3 Appendix 3: REMDOE 

REMDOE is a dynamic OD matrix estimator. Its classification can be 
seen in Figure 9.2. 
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Figure 9.2: The classification of 
REMDOE 
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9.4 Appendix 4: Building an a priori OD matrix from 

junction turning fractions 

For the 17 observed junctions in the study area, turning fraction per 
direction is available.  
  
At each junction, each departing turning movement is considered as 
follows: 
 

- Each departing turning movement is associated to one origin 
zone 

- The distance from this origin to all destinations is calculated  
- Calculate proportional from this origin to all destinations, based 

on the gravity model 
- OD trip is obtained by multiplying the turning proportional with 

the total departing turning flow 
  
This is repeated for all departing turning movements at all junctions. 
That gives the distribution of observed flows over possible origins and 
destinations.  
  
Note that normally 12 departing tuning movements exist at one 
junction. 17 junctions would give possibilities to have all origins 
considered. All destinations are automatically considered in this case. As 
these 17 junction observations cover major flows in the study area, the 
method would allow an initial estimation of a priori OD matrix.   
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9.5 Appendix 5: The MATLAB codes  

Below are the most important MATLAB codes that were written for this thesis. 

9.5.1. Data cleaning 

The code below shows how the data of June 7 was cleaned. The other three days were cleaned in the 
same way. 

 
s = importdata( 'ODt_out_path_n_07Jun.txt' );  
Node1 = s(:,7);  
  
i=1;  
A=[];  
while  i<size(s,1)+1  
    if  Node1(i)>0  
        A=[A; s(i,:)];  
    end  
    i=i+1;  
end  
A=A';  
  
fid = fopen( 'Input 7 June.txt' , 'wt' );  
fprintf(fid, '%1.0f %8.0f %6.0f %3.0f %1.3f %2.0f %2.0f %2.0f %2 .1f\n' , A);  
fclose(fid)  

 

9.5.2. ODs assigned, OD matrices derived, paths computed and path lengths calculated.  

The following is the main data processing code. In this code the following is done: 
 

- Origins (O) and destinations (D) are assigned to the measurements 
according to the defined rules 

- Trip times are calculated 
- Paths and path lengths are calculated and written into a text file 
- OD matrices are calculated and written into a text file 

 
The code can as well be used to perform a sensitivity analysis. 

 
 

% Program for analysing FCD. O's and D's are assign ed to measurements, OD  
% matrices are derived, Paths are computed and Path  lengths are calculated  
  
clear  
tic;  
  
% variables Break (br) and Real stop (stop) defined , variable values are  
% for the sensitivity analaysis only  
A=[1 1.2 1.5 1.8 2 2.2 5 7 10 20 30 40 50 100 500 1 000 1440];  
% A=[2];  
  
% This is only for the sensitivity analysis. The na me of the file, where  
% the different OD pairs and OD matrices are writte n, is defined.  
filename=([ 'SensitivityAnalysis 9 May.xls' ]);  
letter=65;  
numb=1;  
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% this loop is only used for the sensitivity analys is  
for  i=1:size(A,2)  
  
    br = A(i);  
    stop = 2;  
  
    % load FCD  
    % Vnr: Vehicle number  
    % date: The date of the measurement  
    % t: time of measurement in hhmmss  
    % tsec: time of measurement in seconds from midnigh t  
    % v: vehicle speed  
    % zone: the zone where the vehicle is detected  
    % Node1: the starting node of the link where the ve hicle is located  
    % Node2: the end node of the link where the vehicle  is located  
    % PercOfLink: The vehicle's distance from Node1, pe rcentage of total length  
  
    s = importdata( 'Input 9 May.txt' );  
    Vnr = s(:,1);  
    date = s(:,2);  
    t = s(:,3);  
    tsec = floor(t/10000)*3600+floor((t-floor(t/100 00)*10000)/100)*60+t-
floor(t/100)*100;  
    v = s(:,5);  
    zone = s(:,6);  
    Node1 = s(:,7);  
    Node2 = s(:,8);  
    PercOfLink = s(:,9);  
    fprintf(1, ' dataimport complete' );  
  
    % dT is a vector with time between two measurements ,  
    % Ts is a vector with mesurements how long a vehicl e is stop  
    % Stop1 is a vector where 1 is applied to a stop wh en it exceeds the  
    %parameter stop, i.e. Real stops, 0 to all others.  
    dT = zeros(size(s,1),1);  
    Ts = zeros(size(s,1),1);  
    Stop1 = zeros(size(s,1),1);  
    for  i = 2:size(s,1)  
        if  Vnr(i)==Vnr(i-1)  
            dT(i,:)=(tsec(i)-tsec(i-1))/60;  
        else  
            dT(i,:)=0;  
        end  
        if  v(i) == 0  
            if  v(i-1) == 0  
                Ts(i,:) = Ts(i-1)+ dT(i);  
            else  
                Ts(i,:) = dT(i);  
            end  
        end  
  
        if  v(i) == 0 && Ts(i)>stop  
            Stop1(i,:) = 1;  
        else  
            Stop1(i,:) = 0;  
        end  
    end  
    fprintf(1, ' dT, Ts and Stop1 complete' );  
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    % Stop2 applies 1 to all measurements that belong t o a Real stop, 0 to all  
    %others.  
    Stop2=Stop1;  
    j=1;  
    while  j<50  
        for  i = 1:size(s,1)-1  
            if  v(i)==0 && Stop2(i+1)==1  
                Stop2(i,:)=1;  
            end  
        end  
        j=j+1;  
    end  
    fprintf(1, ' Stop2 complete' );  
  
  
    % When time between measurements exceeds the parame ter br, Bre applies 1 to  
    %the measurement after the break, 0 to all others.  
    Bre = zeros(size(s,1),1);  
    for  i = 1:size(s,1)  
        if  dT(i) > br  
            Bre(i,:) = 1;  
        else  
            Bre(i,:) = 0;  
        end  
    end  
    fprintf(1, ' Bre complete' );  
  
  
    % OD applies 1 to all origins and 2 to all destinat ions.  
    OD = zeros(size(s,1),1);  
    for  i = 1:size(s,1)  
         
        % first and last measurements  
        if  i == 1 && v(i)==0  
            for  m = 1:size(s,1)  
                if  v(m)~=0, break  
                end  
            end  
            if  Bre(i+1)~=1 && Stop2(i+1)~=1  
                OD(m,:) = 1;  
            end  
        elseif  i == size(s,1) && v(i)==0  
            for  n=size(s,1):-1:1  
                if  v(n)~=0, break  
                end  
            end  
            if  Bre(i)~=1 && Stop2(i-1)  
                OD(n,:) = 2;  
            end  
        elseif  i==1 && v(i)~=0  
            if  Bre(i+1)~=1 && Stop2(i+1)~=1  
                OD(i,:)=1;  
            end  
        elseif  i==size(s,1) && v(i)~=0  
            if  Bre(i)~=1 && Stop2(i-1)~=1  
                OD(i,:)=2;  
            end  
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        % first and last measurement from a vehicle  
        elseif  Vnr(i)>Vnr(i-1) && v(i)==0  
            for  m=i:size(s,1)  
                if  v(m)~=0, break  
                end  
            end  
            if  Bre(i+1)~=1 && Stop2(i+1)~=1  
            OD(m,:)=1;  
            end  
        elseif  Vnr(i)<Vnr(i+1) && v(i)==0  
            for  n=i:-1:1  
                if  v(n)~=0, break  
                end  
            end  
            if  Bre(i)~=1 && Stop2(i-1)~=1  
                OD(n,:)=2;  
            end  
        elseif  Vnr(i)>Vnr(i-1)&& v(i)~=0  
            if  Bre(i+1)~=1 || Stop2(i+1)~=1  
                OD(i,:) = 1;  
            end  
        elseif  Vnr(i)<Vnr(i+1)&& v(i)~=0  
            if  Bre(i)~=1 || Stop2(i-1)~=1  
                OD(i,:) = 2;  
            end  
        end  
    end  
             
        % origins and destinations due to breaks and real s tops  
        for  i = 2:size(s,1)-1  
            if  v(i)~=0  
                if  Bre(i)==1 || Stop2(i-1)==1  
                    OD(i,:) = 1;  
                elseif  Bre(i+1)==1 || Stop2(i+1)==1  
                    OD(i,:) = 2;  
                elseif  (Bre(i)==1 && Bre(i+1)==1)||(Stop2(i-1)==1 && 
Stop2(i+1)==1)||(Bre(i)==1 && Stop2(i+1)==1)||(Bre( i+1)==1 && Stop2(i-1)==1)  
                    OD(i,:) = 0;  
                end  
            end  
        end  
    fprintf(1, ' OD complete' );  
  
  
    % OD2 replaces the zeros in OD for the value of the  previous O/D.  
    OD2 = zeros(size(s,1),1);  
    for  i = 1:size(s,1)  
        if  i == 1  
            OD2(i,:)=OD(i);  
        elseif  OD(i)==1 || OD(i)==2  
            OD2(i,:)=OD(i);  
        else  
            OD2(i,:)=OD2(i-1);  
        end  
    end  
    fprintf(1, ' OD2 complete' );  
  
    % StartTime and StartTimeSec are vectors with the s tarting times of all  
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    % trips  
    StartTime = [];  
    StartTimeSec = [];  
    j=1;  
    for  i=1  
        if  OD2(i)==1  
            StartTime(j,:)=t(i);  
            StartTimeSec(j,:)=tsec(i);  
            j=j+1;  
        end  
    end  
    for  i=2:size(s,1)  
        if  OD2(i)==1 && OD2(i-1)~=1  
            StartTime(j,:)=t(i);  
            StartTimeSec(j,:)=tsec(i);  
            j=j+1;  
        end  
    end  
    fprintf(1, ' StartTime complete' );  
  
    % EndTime and EndTimeSec are vectors with the end t imes of all trips  
    EndTime = [];  
    EndTimeSec = [];  
    j=1;  
    for  i=2:size(s,1)  
        if  OD2(i)==2 && OD2(i-1)==1  
            EndTime(j,:)=t(i);  
            EndTimeSec(j,:)=tsec(i);  
            j=j+1;  
        end  
    end  
    fprintf(1, ' EndTime complete' );  
     
    TripTimeSec=EndTimeSec-StartTimeSec;  
    fprintf(1, ' EndTime complete' );  
  
    % zone2 is a vector with the zone numbers of O/D on ly, corresponding to  
    % OD2 
    zone2 = zeros(size(s,1),1);  
    for  i=1  
        if  OD2(i)==0  
            zone2(i,:)=zone(i+1);  
        else  
            zone2(i,:)=zone(i);  
        end  
    end  
    for  i=2:size(s,1)  
        if  (OD2(i)==2 && OD2(i-1)==1) || (OD2(i)==1 && OD2(i- 1)==2)  
            zone2(i,:)=zone(i);  
        else  
            zone2(i,:)=zone2(i-1);  
        end  
    end  
    fprintf(1, ' zone2 complete' );  
  
    % ODpair is a matrix with all the OD pairs and trip  times in seconds  
    ODpair = [];  
    x=1;  
    for  i = 1:size(s,1)-1  
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        if  OD2(i) == 1 && OD2(i+1) == 2  
            pair(i,:)=[StartTimeSec(x) zone2(i) zon e2(i+1)];  
            x=x+1;  
            ODpair=[ODpair;pair(i,:)];  
        end  
    end  
    fprintf(1, ' ODpair complete' );  
  
    % MeasuredPath is the detected path of the vehicles  for each trip  
    MeasuredPath = ones(size(ODpair,1),700)*999;  
    x=1;        %measurement  
    j=1;        %Path 
    while  x<=size(s,1)  
        k=1;    %Placement in path  
        if  OD(x)==1  
            MeasuredPath(j,(2*k-1):(2*k))=[Node1(x)  Node2(x)];  
            x=x+1;  
            k=k+1;  
            if  OD(x)==0 || OD(x)==1  
                while  OD(x)==0 || OD(x)==1  
                    MeasuredPath(j,(2*k-1):(2*k))=[ Node1(x) Node2(x)];  
                    x=x+1;  
                    k=k+1;  
                end  
            end  
            if  OD(x)==2  
                MeasuredPath(j,(2*k-1):(2*k))=[Node 1(x) Node2(x)];  
                x=x+1;  
            end  
            j=j+1;  
        else  
            x=x+1;  
        end  
    end  
    fprintf(1, ' MeasuredPath complete' );  
  
    Paths = ones(size(ODpair,1),800)*999;  
    i=2087;  
    while  i<=size(MeasuredPath,1)  
        Path=[MeasuredPath(i,1)];  
        j=2;  
        while  MeasuredPath(i,j)~=999  
            if  MeasuredPath(i,j+1)~=999  
                CoPath=CompPath(MeasuredPath(i,j),M easuredPath(i,j+1));  
                Path=[Path CoPath];  
            else  
                Path=[Path MeasuredPath(i,j)];  
                Paths(i,1:size(Path,2))=Path;  
            end  
            j=j+2;  
        end  
        i=i+1;  
    end  
    fprintf(1, ' Paths complete' );  
  
    % PathLength calculates the lenght of each path  
    PathLength=zeros(size(Paths,1),1);  
    i=1;  
    while  i<=size(Paths,1)  
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        k=1;  
        while  Paths(i,k+1)~=999 && k<=size(Paths,2)  
            
PathLength(i)=PathLength(i)+Linklength(Paths(i,k),P aths(i,k+1))*1000;  
            k=k+1;  
        end  
        i=i+1;  
    end  
    fprintf(1, ' PathLength complete' );  
  
     
    % ODandPath includes the start time of the trip, th e OD zones and the  
    % path. TimePathLength includes the start time of t he trip and the path  
    % length.  
    ODandPath=[ODpair Paths];  
    TimePathLength=[StartTimeSec PathLength];  
     
    % Outcomes of ODandPath printed in an text file  
    fid = fopen( 'ODandPath 9May.txt' , 'w+' );  
    for  i=1:size(ODandPath,1)  
        j=1;  
        while  ODandPath(i,j+1)~=999  
            fprintf(fid, '%5.0f' , ODandPath(i,j));  
            j=j+1;  
        end  
        fprintf(fid, '%5.0f\n' ,ODandPath(i,j));  
    end  
    fclose(fid);  
  
    % Outecomes of TimePathLength printed in a text fil e 
    fid = fopen( 'PathLength 9May.txt' , 'w+' );  
    fprintf(fid, '%5.0f %5.0f\n' ,TimePathLength);  
    fclose(fid);  
     
  
    % Below the OD matrices are calculated  
    % ODmatrixTotal is an OD matrix from all the data.  
    ODmatrixTotal = [];  
    for  i = 1:max(zone2)                                       %i is origin  
        Row = [];  
        for  j = 1:max(zone2)                                   %j is dest  
            k = find(ODpair(:,2)==(i) & ODpair(:,3) ==(j));  
            number(j,:) = length(k);  
            Row = [Row number(j,:)];  
        end  
        ODmatrixTotal = [ODmatrixTotal;Row];  
    end  
    fprintf(1, ' ODmatrix complete' );  
  
    TimeSlice = [2700:3600:31800];  
    ODmatrixTimeSlice = [];  
    for  x=1:size(TimeSlice,2)-1  
        for  i = 1:max(zone2)                                   %i is origin  
            RowTimeSlice = [];  
            for  j = 1:max(zone2)                               %j is dest  
                kTimeSlice = find(ODpair(:,1)>=Time Slice(x) & 
ODpair(:,1)<TimeSlice(x+1) & ODpair(:,2)==(i) & ODp air(:,3)==(j));  
                numberTimeSlice(j,:) = length(kTime Slice);  
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                RowTimeSlice = [RowTimeSlice number TimeSlice(j,:)];  
            end  
            ODmatrixTimeSlice = [ODmatrixTimeSlice; RowTimeSlice];  
        end  
    end  
    fprintf(1, ' ODmatrixTimeSlice complete' );  
  
    % ODmatrixAM is an OD matrix for AM peak 7:00-10:00  
    ODmatrixAM = [];  
    for  i = 1:max(zone2)                                       %i is origin  
        RowAM = [];  
        for  j = 1:max(zone2)                                   %j is dest  
            kAM = find(ODpair(:,1)>=25200 & ODpair( :,1)<36000 & ODpair(:,2)==(i) 
& ODpair(:,3)==(j));  
            numberAM(j,:) = length(kAM);  
            RowAM = [RowAM numberAM(j,:)];  
        end  
        ODmatrixAM = [ODmatrixAM;RowAM];  
    end  
    fprintf(1, ' ODmatrixAM complete' );  
  
    % ODmatrixPM is an OD matrix for PM peak 16:00-19:0 0 
    ODmatrixPM = [];  
    for  i = 1:max(zone2)                                       %i is origin  
        RowPM = [];  
        for  j = 1:max(zone2)                                   %j is dest  
            kPM = find(ODpair(:,1)>=57600 & ODpair( :,1)<68400 & ODpair(:,2)==(i) 
& ODpair(:,3)==(j));  
            numberPM(j,:) = length(kPM);  
            RowPM = [RowPM numberPM(j,:)];  
        end  
        ODmatrixPM = [ODmatrixPM;RowPM];  
    end  
    fprintf(1, ' ODmatrixPM complete' );  
  
    if  letter>90 && letter<116  
        letter1=letter-26;  
        range1 = [sprintf( '%s' , 65) sprintf( '%s' , letter1) '1' ];  
    elseif  letter>115  
        letter1=letter-52;  
        range1 = [sprintf( '%s' , 66) sprintf( '%s' , letter1) '1' ];  
    else  
        range1 = [sprintf( '%s' , letter) '1' ];  
    end  
    range2 = [ 'A'  num2str(numb)];  
  
    sheet1=[ 'ODpair' ];  
    sheet2=[ 'ODmatrixTotal' ];  
    sheet3=[ 'ODmatrixAM' ];  
    sheet4=[ 'ODmatrixPM' ];  
    sheet5=[ 'ODmatrixTimeSlice' ];  
  
    warning off  MATLAB:xlswrite:AddSheet  
  
    xlswrite(filename, ODpair, sheet1,range1);  
    xlswrite(filename, ODmatrixTotal, sheet2,range2 );  
    xlswrite(filename, ODmatrixAM, sheet3,range2);  
    xlswrite(filename, ODmatrixPM, sheet4,range2);  
    xlswrite(filename, ODmatrixTimeSlice, sheet5,ra nge2);  
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    letter=letter+4;  
    numb=numb+20;  
end  
beep;  
toc  

 

9.5.3. Functions 

The function below calculates the shortest path between two links. 
 

function  f = CompPath(N1,N2)  
  
p = xlsread( 'CompPath.xls' );  
Nod1 = p(:,1);  
Nod2 = p(:,2);  
Time = p(:,3);  
Dist = p(:,4);  
NBNod = p(:,5);  
List = ones(size(Nod1,1),max(NBNod)+1)*999;  
for  i = 1:size(Nod1,1)  
    List(i,1:NBNod(i)) = p(i,6:(5+NBNod(i)));  
end  
  
for  i=1:size(Nod1,1)  
    if  Nod1(i)==N1 && Nod2(i)==N2  
        g=List(i,:);  
        x=1;  
        while  g(x)< 999  
            x=x+1;  
        end  
        f=List(i,1:x-1);  
    end  
end  
 
 
The following function calculates the shortest path between two zones. 

 
function  f = CompPathZone(Z1,Z2)  
  
p = xlsread( 'CompPathZone.xls' );  
Zon1 = p(:,1);  
Zon2 = p(:,2);  
Time = p(:,3);  
Dist = p(:,4);  
NBNodZ = p(:,5);  
List = ones(size(Zon1,1),max(NBNodZ)+1)*999;  
for  i = 1:size(Zon1,1)  
    List(i,1:NBNodZ(i)) = p(i,6:(5+NBNodZ(i)));  
end  
  
for  i=1:size(Zon1,1)  
    if  Zon1(i)==Z1 && Zon2(i)==Z2  
        g=List(i,:);  
        x=1;  
        while  g(x)< 999  
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            x=x+1;  
        end  
        f=List(i,1:x-1);  
    end  
end 
 
 
The following MATLAB code is the function that gives the length of links. 

 
function  f = Linklength(N1,N2)  
  
p = importdata( 'Link_DistTime.txt' );  
Link = p(:,1);  
Nod1 = p(:,2);  
Nod2 = p(:,3);  
Dist = p(:,4); %km 
Time = p(:,6); %min 
  
  
for  i=1:size(Nod1,1)  
    if  Nod1(i)==N1 && Nod2(i)==N2  
        f=Dist(i,:);  
    end  
end 
 
 
The following function gives the number of nodes in the shortest path between two nodes. 

 
function  f = NBNodes(N1,N2)  
  
p = xlsread( 'CompPath.xls' );  
Nod1 = p(:,1);  
Nod2 = p(:,2);  
Time = p(:,3);  
Dist = p(:,4);  
NBN = p(:,5);  
  
for  i=1:size(Nod1,1)  
    if  Nod1(i)==N1 && Nod2(i)==N2  
        f=NBN(i);  
    end  
end 
 

 
The following function gives the number of nodes in the shortest path between two zones. 

 
function  f = NBNodesZ(Z1,Z2)  
  
p = xlsread( 'CompPathZone.xls' );  
Zon1 = p(:,1);  
Zon2 = p(:,2);  
Time = p(:,3);  
Dist = p(:,4);  
NBNZ = p(:,5);  
  
for  i=1:size(Zon1,1)  
    if  Zon1(i)==Z1 && Zon2(i)==Z2  
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        f=NBNZ(i);  
    end  
end  
 

 

9.5.4. Trip length distribution 

The code below calculates and draws the TLD from FCD as well as data given by the OVG (1996). 
 

clear  
s=importdata( 'PathLength 9May.txt' )  
Space=[0 1 1.5 5 10 15 20 30 40 50 75 100 150 200 3 00];  
  
TL1=[];  
j=1;  
while  j<size(Space,2)  
    n=0;  
    for  i=1:size(s,1)  
        if  s(i,2)>Space(j)*1000 && s(i,2)<=Space(j+1)*1000  
            n=n+1;  
        end  
    end  
    TL1=[TL1;Space(j+1) n];  
    j=j+1;  
end  
  
sum=0;  
for  i=1:size(TL1,1)  
    sum=sum+TL1(i,2);  
end  
hold on 
figure(1);  
plot(TL1(:,1),TL1(:,2)/sum*100, '.-b' )  
  
r=importdata( 'PathLength 10May.txt' )  
  
TL2=[];  
j=1;  
while  j<size(Space,2)  
    n=0;  
    for  i=1:size(r,1)  
        if  r(i,2)>Space(j)*1000 && r(i,2)<=Space(j+1)*1000  
            n=n+1;  
        end  
    end  
    TL2=[TL2;Space(j+1) n];  
    j=j+1;  
end  
  
sum=0;  
for  i=1:size(TL2,1)  
    sum=sum+TL2(i,2);  
end  
  
hold on 
figure(1);  
plot(TL2(:,1),TL2(:,2)/sum*100, 'o-r' )  
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%OVG TLD 
OVG=[1 1.5 5 10 15 20 30 40 50 75 100 150 200 300; 3.55 18.18 16.89 20.66 11.04 
6.65 10.26 4.12 2.31 3.26 1.39 1.14 0.39 0.17]';   
hold on 
figure(1);  
plot(OVG(:,1),OVG(:,2), '*-g' )  
h = legend( '9 May' , '10 May' , 'OVG' );  
xlabel( 'Trip length [km]' );  
ylabel( 'Percentage of total trips [%]' );  

  
 

The following code calculates and plots the TLD from an OD matrix 
 

clear  
S=importdata( 'ShortestPathLengths.txt' );  
od=importdata( 'ODmatrixTOT.txt' );  
  
OD=[];  
for  i=1:18  
    for  j=1:18  
        if  i~=j  
        OD=[OD;od(i,j)];  
        end  
         
    end  
end  
  
S=[S OD];  
  
Space=[0 0.5 1 1.5 2 2.5 3 3.5 4];  
   
TL1=[];  
j=1;  
while  j<size(Space,2)  
    n=0;  
    for  i=1:size(S,1)  
        if  S(i,3)>Space(j) && S(i,3)<=Space(j+1)  
            n=n+S(i,4);  
        end  
    end  
    TL1=[TL1;Space(j+1) n];  
    j=j+1;  
end  
  
sum=0;  
for  i=1:size(TL1,1)  
    sum=sum+TL1(i,2);  
end  
  
for  i=1:size(TL1,1)  
    TL1(i,2)=TL1(i,2)/sum*100;  
end  
hold on 
plot(TL1(:,1),TL1(:,2), '.--r' )  
xlabel( 'Trip length [km]' );  
ylabel( 'Percentage of total trips [%]' );  
set(gca, 'XTick' ,[0 0.5 1 1.5 2 2.5 3 3.5 4]);  
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h = legend( '7:30-7:39' , '7:40-7:49' , '7:50-7:59' , '8:00-8:09' , '8:10-8:19' , '8:20-
8:29' , '8:30-8:39' , '8:40-8:49' );  

 

9.5.5. Input for NEST written 

In the following MATLAB code, the input for NEST is written into a text file. Furthermore, the parameters 
pij

a are calculated. 
 

% Program that writes the input file for NEST  
tic;  
  
% Name of NEST inputfile defined - Needs to be chan ged for each time slice  
fid = fopen( 'CDPIII.txt' , 'w+' );  
  
% Traffic counts imported - CountsTime needs to be changed for each time  
% slice  
Counts=importdata( 'LinkCounts.txt' );  
% CountsTime=Counts(:,4);  %Time00 %I  
% CountsTime=Counts(:,5);  %Time10 %II  
CountsTime=Counts(:,6);  %Time20 %III  
% CountsTime=Counts(:,7);  %Time30 %IV  
% CountsTime=Counts(:,8);  %Time40 %V  
% CountsTime=Counts(:,9);  %Time50 %VI  
% CountsTime=Counts(:,10); %Time60 %VII  
% CountsTime=Counts(:,11); %Time70 %VIII  
% CountsTime=Counts(:,12); %Total  
  
% Definition of Links imported - Same for all time slices  
L=importdata( 'Links.txt' );  
L=[L(:,2) L(:,3)];  
  
% Paths imported - Needs to be changed for each tim e slice  
s=importdata( 'ODandPath 9May Time20.txt' );  
StartTime = s(:,1);  
Zone1 = s(:,2);  
Zone2 = s(:,3);  
Path = s(:,4:size(s,2));  
  
% A-priori matrix imported - Needs to be changed fo r each time slice  
Apriori=importdata( 'PFCD20.txt' );  
Apr=Apriori(:,3);  
  
% #1 Title printed - Needs to be changed for each t ime slice  
fprintf(fid, 'Chengdu input for NEST 9 May with PFCD martix Time 20 7:50-7:59\n' );  
  
% Hereafter nothing needs to be changed for differe nt timeslices!!  
  
  
% #2 Specifications printed - Same for all time sli ces  
Accuracy=0.25;      %Max rel. err allowed between estima. and actual fl ows 
RouteChoice=1;      %All-or-nothing=0; fractional distribution=1  
MaxIterations=25;   %Max iterations the program will perform  
Output=1;           %Complete output=1; Shortened output=0  
Input=0;            %Normal input=0; Shortened input=1  
  
Specifications=[Accuracy RouteChoice MaxIterations Output Input]';  
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fprintf(fid, '%1.3f %4.0f %4.0f %4.0f %4.0f\n' ,Specifications);  
  
% #3 Counted Links printed - Same for all time slic es  
CountedLinks=Counts(:,2);  
i=1;  
while  i<=size(CountedLinks,1)  
    if  CountedLinks(i)<10  
        fprintf(fid, '%5.0f%1.0f' , [0 CountedLinks(i)]);  
        fprintf(fid, '  ' );  
    else  
        fprintf(fid, '%6.0f' , [CountedLinks(i)]);  
        fprintf(fid, '  ' );  
    end  
    if  i==10 || i==20 || i==30 || i==40 || i==50  
        fprintf(fid, '\n' );  
    end  
    i=i+1;  
end  
fprintf(fid, '\n' );  
  
% Star printed  
fprintf(fid, '*\n' );  
  
% #4 OD connections printed - Same for all time sli ces  
x=1;  
for  i=1:18  
    for  j=1:18  
        if  i<10 && j<10  
            fprintf(fid, '%3.0f%1.0f%1.0f%1.0f' , [0 i 0 j]);  
            fprintf(fid, '  ' );  
        elseif  i>=10 && j<10  
            fprintf(fid, '%4.0f%1.0f%1.0f' , [i 0 j]);  
            fprintf(fid, '  ' );  
        elseif  i<10 && j>=10  
            fprintf(fid, '%3.0f%1.0f%2.0f' , [0 i j]);  
            fprintf(fid, '  ' );  
        elseif  i>=10 && j>=10  
            fprintf(fid, '%4.0f%2.0f' , [i j]);  
            fprintf(fid, '  ' );  
        end  
        x=x+1;  
        if  x==11 || x==21 || x==31 || x==41 || x==51 || x==61  || x==71  
            fprintf(fid, '\n' );  
        end  
        if  x==81 || x==91 || x==101 || x==111 || x==121 || x= =131 || x==141  
            fprintf(fid, '\n' );  
        end  
        if  x==151 || x==161 || x==171 || x==181 || x==191 || x==201  
            fprintf(fid, '\n' );  
        end  
        if  x==211 || x==221 || x==231  || x==241 || x==251 ||  x==261  
            fprintf(fid, '\n' );  
        end  
        if  x==271 || x==281 || x==291 || x==301 || x==311 || x==321  
            fprintf(fid, '\n' );  
        end  
    end  
end  
fprintf(fid, '\n' );  
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% Star printed  
fprintf(fid, '*\n' );  
  
% #5 Routes and route choice printed - file is chan ged above, otherwise  
% same for all time slices  
  
% Paths organized by zones and intrazonal trips era sed  
Q=[];  
z1=1;  
while  z1<=18  
    z2=1;  
    while  z2<=18  
        for  i=1:size(s,1)  
            if  Zone1(i)==z1 && Zone2(i)==z2  
                if  z1~=z2  
                    Q=[Q; Zone1(i) Zone2(i) Path(i, :)];  
                end  
            end  
        end  
        z2=z2+1;  
    end  
    z1=z1+1;  
end  
  
% Computed shortest paths inserted when OD connecti on is missing  
P=[];  
z1=1;  
while  z1<=18  
    z2=1;  
    while  z2<=18  
        m=0;  
        for  i=1:size(s,1)  
            if  Zone1(i)==z1 && Zone2(i)==z2  
                if  z1~=z2  
                    m=m+1;  
                    P=[P; m z1 z2 Path(i,:)];  
                end  
            end  
        end  
        if  m==0  
            if  z1~=z2  
                P=[P; m z1 z2 CompPathZone(z1,z2) z eros(1,size(Path,2)-
NBNodesZ(z1,z2))];  
            end  
        end  
        z2=z2+1;  
    end  
    z1=z1+1;  
end  
  
% The paths of each OD pair counted  
R=P;  
i=1;  
while  i<size(R,1)  
    if  R(i,1)==1  
        m=0;  
        while  i<size(R,1) && R(i,1)<R(i+1,1)   
                i=i+1;  



 
 
 

 
 
 

 118 Dynamic OD matrix estimation  

                m=m+1;  
        end  
        R((i-m):i,1)=m+1;  
    end  
    i=i+1;  
end  
  
%Node numbers replaced by link numbers  
T=[R(:,1:3) zeros(size(R,1),size(R,2)-3)];  
i=1;  
while  i<=size(R,1)  
    j=4;  
    while  R(i,j+1)~=0  
        for  x=1:size(L,1)  
            if  L(x,:)==[R(i,j) R(i,j+1)]  
                l=x;  
            end  
        end  
        T(i,j)=l;  
        j=j+1;  
    end  
    i=i+1;  
end  
  
  
% Paths where shortest path is used printed  
i=1;  
while  i<=size(T,1)  
    if  T(i,1)==0  
        S1=[T(i,2:size(T,2))];  
        j=1;  
        S=[];  
        while  j<=size(S1,2)  
            if  S1(j)>0  
                S=[S S1(j)];  
            end  
            j=j+1;  
        end  
  
        for  x=1  
            if  S(x)<10 && S(x+1)<10  
                fprintf(fid, '%3.0f%1.0f%1.0f%1.0f' , [0 S(x) 0 S(x+1)]);  
                fprintf(fid, '  ' );  
            elseif  S(x)<10 && S(x+1)>=10  
                fprintf(fid, '%3.0f%1.0f%2.0f' , [0 S(x) S(x+1)]);  
                fprintf(fid, '  ' );  
            elseif  S(x)>=10 && S(x+1)<10  
                fprintf(fid, '%4.0f%1.0f%1.0f' , [S(x) 0 S(x+1)]);  
                fprintf(fid, '  ' );  
            elseif  S(x)>=10 && S(x+1)>=10  
                fprintf(fid, '%4.0f%2.0f' , [S(x) S(x+1)]);  
                fprintf(fid, '  ' );  
            end  
        end  
  
        for  x=3:size(S,2)  
            for  m=1:size(CountedLinks,1)  
                if  S(x)==CountedLinks(m)  
                    if  S(x)<10  
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                        fprintf(fid, '%5.0f%1.0f' , [0 S(x)]);  
                        fprintf(fid, '  ' );  
                    else  
                        fprintf(fid, '%6.0f' ,S(x));  
                        fprintf(fid, '  ' );  
                    end  
                end  
            end  
        end  
        fprintf(fid, '\n' );  
    end  
    i=i+1;  
end  
  
% Paths with measured paths printed  
i=1;  
while  i<=size(T,1)  
    if  T(i,1)>=1  
        A1=[];  
        for  x=i:(i+T(i,1)-1)  
            A1=[A1 T(x,4:size(T,2))];  
        end  
        j=1;  
        A=[];  
        while  j<=size(A1,2)  
            if  A1(j)>0  
                A=[A A1(j)];  
            end  
            j=j+1;  
        end  
  
  
        E=[];  
        y=1;  
        while  y<=max(A)  
            t=0;  
            for  j=1:size(A,2)  
                if  A(j)==y  
                    t=t+1;  
                end  
            end  
            E=[E t/T(i,1)*100];  
            y=y+1;  
        end  
  
        x=1;  
        n=0;  
        while  x<=size(E,2)  
  
            if  n==0 || n==80 || n==160 || n==240  
                if  n~=0  
                    fprintf(fid, '\n' );  
                end  
                if  T(i,2)<10 && T(i,3)<10  
                    fprintf(fid, '%3.0f%1.0f%1.0f%1.0f' , [0 T(i,2) 0 T(i,3)]);  
                    fprintf(fid, '  ' );  
                elseif  T(i,2)<10 && T(i,3)>=10  
                    fprintf(fid, '%3.0f%1.0f%2.0f' , [0 T(i,2) T(i,3)]);  
                    fprintf(fid, '  ' );  
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                elseif  T(i,2)>=10 && T(i,3)<10  
                    fprintf(fid, '%4.0f%1.0f%1.0f' , [T(i,2) 0 T(i,3)]);  
                    fprintf(fid, '  ' );  
                elseif  T(i,2)>=10 && T(i,3)>=10  
                    fprintf(fid, '%4.0f%2.0f' , [T(i,2) T(i,3)]);  
                    fprintf(fid, '  ' );  
                end  
                n=n+8;  
            end  
  
            if  E(x)>0  
                for  m=1:size(CountedLinks,1)  
                    if  x==CountedLinks(m)  
                        if  E(x)>=100  
                            if  x<10  
                                fprintf(fid, '%5.0f%1.0f' ,[0 x]);  
                                fprintf(fid, '  ' );  
                            else  
                                fprintf(fid, '%6.0f' ,x);  
                                fprintf(fid, '  ' );  
                            end  
                            n=n+8;  
                        elseif  E(x)>0 && E(x)<10  
                            if  x<10  
                                fprintf(fid, '%5.0f%1.0f%1.0f%1.0f' ,[0 x 0 
E(x)]);  
                            else  
                                fprintf(fid, '%6.0f%1.0f%1.0f' ,[x 0 E(x)]);  
                            end  
                            n=n+8;  
                            elseif  E(x)>=10 && E(x)<100  
                            if  x<10  
                                fprintf(fid, '%5.0f%1.0f%2.0f' ,[0 x E(x)]);  
                            else  
                                fprintf(fid, '%6.0f%2.0f' ,[x E(x)]);  
                            end  
                            n=n+8;  
                        end  
                    end  
                end  
            end  
            x=x+1;  
        end  
        fprintf(fid, '\n' );  
        i=i+T(i,1)-1;  
    end  
    i=i+1;  
end  
  
% Star printed  
fprintf(fid, '*\n' );  
  
% #6 Counts printed - CountsTime is changed above, otherwise same for all  
% time slices  
for  i=1:size(Counts,1)  
    if  CountsTime(i)==0  
        fprintf(fid, '%5.0f' ,1);  
    else  
    fprintf(fid, '%5.0f' ,CountsTime(i));  
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    end  
    if  i==16 || i==32 || i==48  
        fprintf(fid, '\n' );  
    end  
end  
fprintf(fid, '\n' );  
  
% Star printed  
fprintf(fid, '*\n' );  
  
% #7 A-priori matrix printed - A-priori matrix chan ged above, otherwise  
% same for all time slices  
for  i=1:size(Apr,1)  
    fprintf(fid, '%5.0f' ,Apr(i));  
    if  i==16 || i==32 || i==48 || i==64 || i==80 || i==96  || i==112  
        fprintf(fid, '\n' );  
    end  
    if   i==128 || i==144 || i==160 || i==176 || i==192 ||  i==208 || i==224  
        fprintf(fid, '\n' );  
    end  
    if  i==240 || i==256 || i==272 || i==288 || i==304 || i==320 || i==336  
        fprintf(fid, '\n' );  
    end  
end  
  
fclose(fid);  
toc  
beep  
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9.6  Appendix 6: Comparison of the structure of OD 

matrices estimated with different a-priori matrices 

CFCD vs. UOD 
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Figure 9.3: Comparison of the estimated 
OD matrices with two different a-priori 
matrices; CFCD and UOD. Time period 
7:30-7:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.4: Comparison of the estimated 
OD matrices with two different a-priori 
matrices; CFCD and UOD. Time period 
7:40-7:49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.5: Comparison of the estimated 
OD matrices with two different a-priori 
matrices; CFCD and UOD. Time period 
7:50-7:59 
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Figure 9.6: Comparison of the estimated 
OD matrices with two different a-priori 
matrices; CFCD and UOD. Time period 
8:00-8:09 
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Figure 9.7: Comparison of the estimated 
OD matrices with two different a-priori 
matrices; CFCD and UOD. Time period 
8:10-8:19 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.8: Comparison of the estimated 
OD matrices with two different a-priori 
matrices; CFCD and UOD. Time period 
8:20-8:29 
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Figure 9.9: Comparison of the estimated 
OD matrices with two different a-priori 
matrices; CFCD and UOD. Time period 
8:30-8:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.10: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 8:40-8:49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.11: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. The whole time period 7:30-8:49 
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Figure 9.12: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 7:30-7:39 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.13: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 7:40-7:49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.14: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 7:50-7:59 
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Figure 9.15: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 8:00-8:09 
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Figure 9.16: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 8:10-8:19 
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Figure 9.17: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 8:20-8:29 
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Figure 9.18: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 8:30-8:39 
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Figure 9.19: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Time period 8:40-8:49 
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Figure 9.20: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
UOD. Total time period 
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CFCD vs. OFCD 
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Figure 9.21: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
OFCD. Time period 8:30-8:39 
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Figure 9.22: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
OFCD. The whole time period 7:30-
8:49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.23: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
OFCD. Time period 8:30-8:39 
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Figure 9.24: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
OFCD. Total time period 
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CFCD vs. PFCD 
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Figure 9.25: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 7:30-7:39 
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Figure 9.26: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 7:40-7:49 
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Figure 9.27: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 7:50-7:59 
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Figure 9.28: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:00-8:09 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.29: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:10-8:19 
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Figure 9.30: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:20-8:29 
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Figure 9.31: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:30-8:39 
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Figure 9.32: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:40-8:49 
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Figure 9.33: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. The whole time period 7:30-8:49 
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Figure 9.34: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 7:30-7:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.35: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 7:40-7:49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.36: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 7:50-7:59 
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Figure 9.37: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:00-8:09 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.38: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:10-8:19 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.39: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:20-8:29 
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Figure 9.40: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:30-8:39 
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Figure 9.41: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Time period 8:40-8:49 
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Figure 9.42: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
PFCD. Total time period  
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CFCD vs. TC 
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Figure 9.43: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 7:30-7:39 
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Figure 9.44: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 7:40-7:49 
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Figure 9.45: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 7:50-7:59 
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Figure 9.46: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:00-8:09 
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Figure 9.47: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:10-8:19 
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Figure 9.48: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:20-8:29 
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Figure 9.49: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:30-8:39 
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Figure 9.50: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:40-8:49 
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Figure 9.51: Comparison of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Total time period 7:30-8:49 
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Figure 9.52: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 7:30-7:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.53: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 7:40-7:49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.54: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 7:50-7:59 
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Figure 9.55: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:00-8:09 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.56: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:10-8:09 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.57: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:20-8:29 
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Figure 9.58: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:30-8:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.59: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Time period 8:40-8:49 
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Figure 9.60: Comparison plot of the 
estimated OD matrices with two 
different a-priori matrices; CFCD and 
TC. Total time period 
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9.7 Appendix 7: Comparison of the structure of OD 

matrices estimated with the developed method and 

with REMDOE 
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Figure 9.61: Comparison between OD 
matrix estimated here and OD matrix 
estimated with REMDOE. Time 7:30-
7:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.62: Comparison between OD 
matrix estimated here and OD matrix 
estimated with REMDOE. Time 7:40-
7:49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.63: Comparison between OD 
matrix estimated here and OD matrix 
estimated with REMDOE. Time 7:50-
7:59 
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Figure 9.64: Comparison between OD 
matrix estimated here and OD matrix 
estimated with REMDOE. Time 8:00-
8:09 
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Figure 9.65: Comparison between OD 
matrix estimated here and OD matrix 
estimated with REMDOE. Time 8:10-
8:19 
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Figure 9.66: Comparison between OD 
matrix estimated here and OD matrix 
estimated with REMDOE. Time 8:20-
8:29 
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Figure 9.67: Comparison between OD 
matrix estimated here and OD matrix 
estimated with REMDOE. Time 8:30-
8:39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.68: Comparison between OD 
matrix estimated here and OD matrix 
estimated with REMDOE. Time 8:40-
8:49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.69: Comparison plot for the 
OD matrix estimated here and the OD 
matrix estimated with REMDOE. Time 
7:30-7:39 
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Figure 9.70: Comparison plot for the 
OD matrix estimated here and the OD 
matrix estimated with REMDOE. Time 
7:40-7:49 
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Figure 9.71: Comparison plot for the 
OD matrix estimated here and the OD 
matrix estimated with REMDOE. Time 
7:50-7:59 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.72: Comparison plot for the 
OD matrix estimated here and the OD 
matrix estimated with REMDOE. Time 
8:00-8:09 
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Figure 9.73: Comparison plot for the 
OD matrix estimated here and the OD 
matrix estimated with REMDOE. Time 
8:10-8:19 
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Figure 9.74: Comparison plot for the 
OD matrix estimated here and the OD 
matrix estimated with REMDOE. Time 
8:20-8:29 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.75: Comparison plot for the 
OD matrix estimated here and the OD 
matrix estimated with REMDOE. Time 
8:30-8:39 
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Figure 9.76: Comparison plot for the 
OD matrix estimated here and the OD 
matrix estimated with REMDOE. Time 
8:40-8:49 



 
 
 

 
 
 

 


